Abstract:Many material properties are manifested in the morphological appearance and characterized with microscopic image, such as scanning electron microscopy (SEM). Polymer compatibility is a key physical quantity of polymer material and commonly and intuitively judged by SEM images. However, human observation and judgement for the images is time-consuming, labor-intensive and hard to be quantified. Computer image recognition with machine learning method can make up the defects of artificial judging, giving accurate and quantitative judgement. We achieve automatic compatibility recognition utilizing convolution neural network and transfer learning method, and the model obtains up to 94% accuracy. We also put forward a quantitative criterion for polymer compatibility with this model. The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
Abstract:Prediction of material property is a key problem because of its significance to material design and screening. We present a brand-new and general machine learning method for material property prediction. As a representative example, polymer compatibility is chosen to demonstrate the effectiveness of our method. Specifically, we mine data from related literature to build a specific database and give a prediction based on the basic molecular structures of blending polymers and, as auxiliary, the blending composition. Our model obtains at least 75% accuracy on the dataset consisting of thousands of entries. We demonstrate that the relationship between structure and properties can be learned and simulated by machine learning method.