Abstract:Physics problems constitute a significant aspect of reasoning, necessitating complicated reasoning ability and abundant physics knowledge. However, existing large language models (LLMs) frequently fail due to a lack of knowledge or incorrect knowledge application. To mitigate these issues, we propose Physics Reasoner, a knowledge-augmented framework to solve physics problems with LLMs. Specifically, the proposed framework constructs a comprehensive formula set to provide explicit physics knowledge and utilizes checklists containing detailed instructions to guide effective knowledge application. Namely, given a physics problem, Physics Reasoner solves it through three stages: problem analysis, formula retrieval, and guided reasoning. During the process, checklists are employed to enhance LLMs' self-improvement in the analysis and reasoning stages. Empirically, Physics Reasoner mitigates the issues of insufficient knowledge and incorrect application, achieving state-of-the-art performance on SciBench with an average accuracy improvement of 5.8%.
Abstract:Many material properties are manifested in the morphological appearance and characterized with microscopic image, such as scanning electron microscopy (SEM). Polymer compatibility is a key physical quantity of polymer material and commonly and intuitively judged by SEM images. However, human observation and judgement for the images is time-consuming, labor-intensive and hard to be quantified. Computer image recognition with machine learning method can make up the defects of artificial judging, giving accurate and quantitative judgement. We achieve automatic compatibility recognition utilizing convolution neural network and transfer learning method, and the model obtains up to 94% accuracy. We also put forward a quantitative criterion for polymer compatibility with this model. The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.
Abstract:Prediction of material property is a key problem because of its significance to material design and screening. We present a brand-new and general machine learning method for material property prediction. As a representative example, polymer compatibility is chosen to demonstrate the effectiveness of our method. Specifically, we mine data from related literature to build a specific database and give a prediction based on the basic molecular structures of blending polymers and, as auxiliary, the blending composition. Our model obtains at least 75% accuracy on the dataset consisting of thousands of entries. We demonstrate that the relationship between structure and properties can be learned and simulated by machine learning method.