Abstract:Complex visual reasoning remains a key challenge today. Typically, the challenge is tackled using methodologies such as Chain of Thought (COT) and visual instruction tuning. However, how to organically combine these two methodologies for greater success remains unexplored. Also, issues like hallucinations and high training cost still need to be addressed. In this work, we devise an innovative multi-round training and reasoning framework suitable for lightweight Multimodal Large Language Models (MLLMs). Our self-questioning approach heuristically guides MLLMs to focus on visual clues relevant to the target problem, reducing hallucinations and enhancing the model's ability to describe fine-grained image details. This ultimately enables the model to perform well in complex visual reasoning and question-answering tasks. We have named this framework Socratic Questioning(SQ). To facilitate future research, we create a multimodal mini-dataset named CapQA, which includes 1k images of fine-grained activities, for visual instruction tuning and evaluation, our proposed SQ method leads to a 31.2% improvement in the hallucination score. Our extensive experiments on various benchmarks demonstrate SQ's remarkable capabilities in heuristic self-questioning, zero-shot visual reasoning and hallucination mitigation. Our model and code will be publicly available.
Abstract:Physics problems constitute a significant aspect of reasoning, necessitating complicated reasoning ability and abundant physics knowledge. However, existing large language models (LLMs) frequently fail due to a lack of knowledge or incorrect knowledge application. To mitigate these issues, we propose Physics Reasoner, a knowledge-augmented framework to solve physics problems with LLMs. Specifically, the proposed framework constructs a comprehensive formula set to provide explicit physics knowledge and utilizes checklists containing detailed instructions to guide effective knowledge application. Namely, given a physics problem, Physics Reasoner solves it through three stages: problem analysis, formula retrieval, and guided reasoning. During the process, checklists are employed to enhance LLMs' self-improvement in the analysis and reasoning stages. Empirically, Physics Reasoner mitigates the issues of insufficient knowledge and incorrect application, achieving state-of-the-art performance on SciBench with an average accuracy improvement of 5.8%.
Abstract:Abstract reasoning, the ability to reason from the abstract essence of a problem, serves as a key to generalization in human reasoning. However, eliciting language models to perform reasoning with abstraction remains unexplored. This paper seeks to bridge this gap by introducing a novel structured reasoning format called Abstraction-of-Thought (AoT). The uniqueness of AoT lies in its explicit requirement for varying levels of abstraction within the reasoning process. This approach could elicit language models to first contemplate on the abstract level before incorporating concrete details, which is overlooked by the prevailing step-by-step Chain-of-Thought (CoT) method. To align models with the AoT format, we present AoT Collection, a generic finetuning dataset consisting of 348k high-quality samples with AoT reasoning processes, collected via an automated and scalable pipeline. We finetune a wide range of language models with AoT Collection and conduct extensive evaluations on 23 unseen tasks from the challenging benchmark Big-Bench Hard. Experimental results indicate that models aligned to AoT reasoning format substantially outperform those aligned to CoT in many reasoning tasks.
Abstract:In mobile and IoT systems, Federated Learning (FL) is increasingly important for effectively using data while maintaining user privacy. One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data, arising from numerous clients and diverse data sources. This requires strategic cooperation, often with clients having similar characteristics. However, we are interested in a fundamental question: does achieving optimal cooperation necessarily entail cooperating with the most similar clients? Typically, significant model performance improvements are often realized not by partnering with the most similar models, but through leveraging complementary data. Our theoretical and empirical analyses suggest that optimal cooperation is achieved by enhancing complementarity in feature distribution while restricting the disparity in the correlation between features and targets. Accordingly, we introduce a novel framework, \texttt{FedSaC}, which balances similarity and complementarity in FL cooperation. Our framework aims to approximate an optimal cooperation network for each client by optimizing a weighted sum of model similarity and feature complementarity. The strength of \texttt{FedSaC} lies in its adaptability to various levels of data heterogeneity and multimodal scenarios. Our comprehensive unimodal and multimodal experiments demonstrate that \texttt{FedSaC} markedly surpasses other state-of-the-art FL methods.
Abstract:In this study, we delve into the realm of counterfactual reasoning capabilities of large language models (LLMs). Our primary objective is to cultivate the counterfactual thought processes within LLMs and rigorously assess these processes for their validity. Specifically, we introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark. In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship. To effectively evaluate a generation model's counterfactual capabilities, we propose an innovative evaluation metric, the LogicAware Counterfactual Score to directly evaluate the natural language output of LLMs instead of modeling the task as a multiple-choice problem. Analysis shows that the proposed automatic metric aligns well with human preference. Our experimental results show that while LLMs demonstrate a notable capacity for logical counterfactual thinking, there remains a discernible gap between their current abilities and human performance.
Abstract:Logical reasoning has been an ongoing pursuit in the field of AI. Despite significant advancements made by large language models (LLMs), they still struggle with complex logical reasoning problems. To enhance reasoning performance, one promising direction is scalable oversight, which requires LLMs to identify their own errors and then improve by themselves. Various self-verification methods have been proposed in pursuit of this goal. Nevertheless, whether existing models understand their own errors well is still under investigation. In this paper, we take a closer look at the self-verification abilities of LLMs in the context of logical reasoning, focusing on their ability to identify logical fallacies accurately. We introduce a dataset, FALLACIES, containing 232 types of reasoning fallacies categorized in a hierarchical taxonomy. By conducting exhaustive experiments on FALLACIES, we obtain comprehensive and detailed analyses of a series of models on their verification abilities. Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods. Drawing from these observations, we offer suggestions for future research and practical applications of self-verification methods.
Abstract:Diffusion models have revolted the field of text-to-image generation recently. The unique way of fusing text and image information contributes to their remarkable capability of generating highly text-related images. From another perspective, these generative models imply clues about the precise correlation between words and pixels. In this work, a simple but effective method is proposed to utilize the attention mechanism in the denoising network of text-to-image diffusion models. Without re-training nor inference-time optimization, the semantic grounding of phrases can be attained directly. We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting and our method achieves superior performance to prior methods. In addition, the acquired word-pixel correlation is found to be generalizable for the learned text embedding of customized generation methods, requiring only a few modifications. To validate our discovery, we introduce a new practical task called "personalized referring image segmentation" with a new dataset. Experiments in various situations demonstrate the advantages of our method compared to strong baselines on this task. In summary, our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.
Abstract:Algorithmic fairness has been a serious concern and received lots of interest in machine learning community. In this paper, we focus on the bipartite ranking scenario, where the instances come from either the positive or negative class and the goal is to learn a ranking function that ranks positive instances higher than negative ones. While there could be a trade-off between fairness and performance, we propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking and maintaining the algorithm classification performance. In particular, we optimize a weighted sum of the utility as identifying an optimal warping path across different protected groups and solve it through a dynamic programming process. xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics. In addition to binary groups, xOrder can be applied to multiple protected groups. We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories. xOrder consistently achieves a better balance between the algorithm utility and ranking fairness on a variety of datasets with different metrics. From the visualization of the calibrated ranking scores, xOrder mitigates the score distribution shifts of different groups compared with baselines. Moreover, additional analytical results verify that xOrder achieves a robust performance when faced with fewer samples and a bigger difference between training and testing ranking score distributions.
Abstract:Although large language models demonstrate remarkable question-answering performances, revealing the intermediate reasoning steps that the models faithfully follow remains challenging. In this paper, we propose FAME (FAithful question answering with MontE-carlo planning) to answer questions based on faithful reasoning steps. The reasoning steps are organized as a structured entailment tree, which shows how premises are used to produce intermediate conclusions that can prove the correctness of the answer. We formulate the task as a discrete decision-making problem and solve it through the interaction of a reasoning environment and a controller. The environment is modular and contains several basic task-oriented modules, while the controller proposes actions to assemble the modules. Since the search space could be large, we introduce a Monte-Carlo planning algorithm to do a look-ahead search and select actions that will eventually lead to high-quality steps. FAME achieves state-of-the-art performance on the standard benchmark. It can produce valid and faithful reasoning steps compared with large language models with a much smaller model size.
Abstract:Many material properties are manifested in the morphological appearance and characterized with microscopic image, such as scanning electron microscopy (SEM). Polymer compatibility is a key physical quantity of polymer material and commonly and intuitively judged by SEM images. However, human observation and judgement for the images is time-consuming, labor-intensive and hard to be quantified. Computer image recognition with machine learning method can make up the defects of artificial judging, giving accurate and quantitative judgement. We achieve automatic compatibility recognition utilizing convolution neural network and transfer learning method, and the model obtains up to 94% accuracy. We also put forward a quantitative criterion for polymer compatibility with this model. The proposed method can be widely applied to the quantitative characterization of the microstructure and properties of various materials.