Jake
Abstract:Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
Abstract:Recent research has shown that large language models (LLMs) can enhance translation quality through self-refinement. In this paper, we build on this idea by extending the refinement from sentence-level to document-level translation, specifically focusing on document-to-document (Doc2Doc) translation refinement. Since sentence-to-sentence (Sent2Sent) and Doc2Doc translation address different aspects of the translation process, we propose fine-tuning LLMs for translation refinement using two intermediate translations, combining the strengths of both Sent2Sent and Doc2Doc. Additionally, recognizing that the quality of intermediate translations varies, we introduce an enhanced fine-tuning method with quality awareness that assigns lower weights to easier translations and higher weights to more difficult ones, enabling the model to focus on challenging translation cases. Experimental results across ten translation tasks with LLaMA-3-8B-Instruct and Mistral-Nemo-Instruct demonstrate the effectiveness of our approach.
Abstract:Document-level context is crucial for handling discourse challenges in text-to-text document-level machine translation (MT). Despite the increased discourse challenges introduced by noise from automatic speech recognition (ASR), the integration of document-level context in speech translation (ST) remains insufficiently explored. In this paper, we develop DoCIA, an online framework that enhances ST performance by incorporating document-level context. DoCIA decomposes the ST pipeline into four stages. Document-level context is integrated into the ASR refinement, MT, and MT refinement stages through auxiliary LLM (large language model)-based modules. Furthermore, DoCIA leverages document-level information in a multi-level manner while minimizing computational overhead. Additionally, a simple yet effective determination mechanism is introduced to prevent hallucinations from excessive refinement, ensuring the reliability of the final results. Experimental results show that DoCIA significantly outperforms traditional ST baselines in both sentence and discourse metrics across four LLMs, demonstrating its effectiveness in improving ST performance.
Abstract:The rapid growth of short videos has necessitated effective recommender systems to match users with content tailored to their evolving preferences. Current video recommendation models primarily treat each video as a whole, overlooking the dynamic nature of user preferences with specific video segments. In contrast, our research focuses on segment-level user interest modeling, which is crucial for understanding how users' preferences evolve during video browsing. To capture users' dynamic segment interests, we propose an innovative model that integrates a hybrid representation module, a multi-modal user-video encoder, and a segment interest decoder. Our model addresses the challenges of capturing dynamic interest patterns, missing segment-level labels, and fusing different modalities, achieving precise segment-level interest prediction. We present two downstream tasks to evaluate the effectiveness of our segment interest modeling approach: video-skip prediction and short video recommendation. Our experiments on real-world short video datasets with diverse modalities show promising results on both tasks. It demonstrates that segment-level interest modeling brings a deep understanding of user engagement and enhances video recommendations. We also release a unique dataset that includes segment-level video data and diverse user behaviors, enabling further research in segment-level interest modeling. This work pioneers a novel perspective on understanding user segment-level preference, offering the potential for more personalized and engaging short video experiences.
Abstract:Numerical reasoning over documents, which demands both contextual understanding and logical inference, is challenging for low-capacity local models deployed on computation-constrained devices. Although such complex reasoning queries could be routed to powerful remote models like GPT-4, exposing local data raises significant data leakage concerns. Existing mitigation methods generate problem descriptions or examples for remote assistance. However, the inherent complexity of numerical reasoning hinders the local model from generating logically equivalent queries and accurately inferring answers with remote guidance. In this paper, we present a model collaboration framework with two key innovations: (1) a context-aware synthesis strategy that shifts the query domains while preserving logical consistency; and (2) a tool-based answer reconstruction approach that reuses the remote-generated problem-solving pattern with code snippets. Experimental results demonstrate that our method achieves better reasoning accuracy than solely using local models while providing stronger data protection than fully relying on remote models. Furthermore, our method improves accuracy by 16.2% - 43.6% while reducing data leakage by 2.3% - 44.6% compared to existing data protection approaches.
Abstract:Reinforcement learning with verifiable rewards (RLVR) has demonstrated significant success in enhancing mathematical reasoning and coding performance of large language models (LLMs), especially when structured reference answers are accessible for verification. However, its extension to broader, less structured domains remains unexplored. In this work, we investigate the effectiveness and scalability of RLVR across diverse real-world domains including medicine, chemistry, psychology, economics, and education, where structured reference answers are typically unavailable. We reveal that binary verification judgments on broad-domain tasks exhibit high consistency across various LLMs provided expert-written reference answers exist. Motivated by this finding, we utilize a generative scoring technique that yields soft, model-based reward signals to overcome limitations posed by binary verifications, especially in free-form, unstructured answer scenarios. We further demonstrate the feasibility of training cross-domain generative reward models using relatively small (7B) LLMs without the need for extensive domain-specific annotation. Through comprehensive experiments, our RLVR framework establishes clear performance gains, significantly outperforming state-of-the-art open-source aligned models such as Qwen2.5-72B and DeepSeek-R1-Distill-Qwen-32B across domains in free-form settings. Our approach notably enhances the robustness, flexibility, and scalability of RLVR, representing a substantial step towards practical reinforcement learning applications in complex, noisy-label scenarios.
Abstract:Popularity bias challenges recommender systems by causing uneven recommendation performance and amplifying the Matthew effect. Limited user-item interactions confine unpopular items within embedding neighborhoods of few users, leading to representation collapse and reduced model generalization. Existing supervised alignment and reweighting methods mitigate this bias but have key limitations: (1) ignoring inherent variability across Graph Convolutional Networks (GCNs) layers, causing negative effects in deeper layers; (2) reliance on fixed hyperparameters to balance item popularity, restricting adaptability and increasing complexity. To address these issues, we propose the Graph-Structured Dual Adaptation Framework (GSDA). Our theoretical analysis identifies a crucial limitation of supervised alignment methods caused by over-smoothing in GCNs. As GCN layers deepen, popular and unpopular items increasingly lose distinctiveness, quantified by reduced conditional entropy. This diminished distinctiveness weakens supervised alignment effectiveness in mitigating popularity bias. Motivated by this, GSDA captures structural and distribution characteristics from the adjacency matrix through a dual adaptive strategy. First, a hierarchical adaptive alignment mechanism uses the adjacency matrix's Frobenius norm for layer-specific weight decay, countering conditional entropy reduction effects at deeper layers. Second, a distribution-aware dynamic contrast weighting strategy, guided by a real-time Gini coefficient, removes dependence on fixed hyperparameters, enabling adaptability to diverse data. Experiments on three benchmark datasets demonstrate GSDA significantly alleviates popularity bias and consistently outperforms state-of-the-art recommendation methods.
Abstract:Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.
Abstract:While human cognition inherently retrieves information from diverse and specialized knowledge sources during decision-making processes, current Retrieval-Augmented Generation (RAG) systems typically operate through single-source knowledge retrieval, leading to a cognitive-algorithmic discrepancy. To bridge this gap, we introduce MoK-RAG, a novel multi-source RAG framework that implements a mixture of knowledge paths enhanced retrieval mechanism through functional partitioning of a large language model (LLM) corpus into distinct sections, enabling retrieval from multiple specialized knowledge paths. Applied to the generation of 3D simulated environments, our proposed MoK-RAG3D enhances this paradigm by partitioning 3D assets into distinct sections and organizing them based on a hierarchical knowledge tree structure. Different from previous methods that only use manual evaluation, we pioneered the introduction of automated evaluation methods for 3D scenes. Both automatic and human evaluations in our experiments demonstrate that MoK-RAG3D can assist Embodied AI agents in generating diverse scenes.
Abstract:Recent studies in prompting large language model (LLM) for document-level machine translation (DMT) primarily focus on the inter-sentence context by flatting the source document into a long sequence. This approach relies solely on the sequence of sentences within the document. However, the complexity of document-level sequences is greater than that of shorter sentence-level sequences, which may limit LLM's ability in DMT when only this single-source knowledge is used. In this paper, we propose an enhanced approach by incorporating multiple sources of knowledge, including both the document summarization and entity translation, to enhance the performance of LLM-based DMT. Given a source document, we first obtain its summarization and translation of entities via LLM as the additional knowledge. We then utilize LLMs to generate two translations of the source document by fusing these two single knowledge sources, respectively. Finally, recognizing that different sources of knowledge may aid or hinder the translation of different sentences, we refine and rank the translations by leveraging a multi-knowledge fusion strategy to ensure the best results. Experimental results in eight document-level translation tasks show that our approach achieves an average improvement of 0.8, 0.6, and 0.4 COMET scores over the baseline without extra knowledge for LLaMA3-8B-Instruct, Mistral-Nemo-Instruct, and GPT-4o-mini, respectively.