Abstract:This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild. Traditional frameworks, such as ParticleSfM~\cite{zhao2022particlesfm}, address this problem by sequentially computing the optical flow between adjacent frames to obtain point trajectories. They then remove dynamic trajectories through motion segmentation and perform global bundle adjustment. However, the process of estimating optical flow between two adjacent frames and chaining the matches can introduce cumulative errors. Additionally, motion segmentation combined with single-view depth estimation often faces challenges related to scale ambiguity. To tackle these challenges, we propose a dynamic-aware tracking any point (DATAP) method that leverages consistent video depth and point tracking. Specifically, our DATAP addresses these issues by estimating dense point tracking across the video sequence and predicting the visibility and dynamics of each point. By incorporating the consistent video depth prior, the performance of motion segmentation is enhanced. With the integration of DATAP, it becomes possible to estimate and optimize all camera poses simultaneously by performing global bundle adjustments for point tracking classified as static and visible, rather than relying on incremental camera registration. Extensive experiments on dynamic sequences, e.g., Sintel and TUM RGBD dynamic sequences, and on the wild video, e.g., DAVIS, demonstrate that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
Abstract:Public Code Review (PCR) is an assistant to the internal code review of the development team, in the form of a public Software Question Answering (SQA) community, to help developers access high-quality and efficient review services. Current methods on PCR mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. However, it is not well studied that how to satisfy the review necessity requests posted by developers which can increase their visibility, which in turn acts as a prerequisite for better review responses. To this end, we propose a Knowledge-guided Prompt learning for Public Code Review (KP-PCR) to achieve developer-based code review request quality assurance (i.e., predicting request necessity and recommending tags subtask). Specifically, we reformulate the two subtasks via 1) text prompt tuning which converts both of them into a Masked Language Model (MLM) by constructing prompt templates using hard prompt; 2) knowledge and code prefix tuning which introduces external knowledge by soft prompt, and uses data flow diagrams to characterize code snippets. Finally, both of the request necessity prediction and tag recommendation subtasks output predicted results through an answer engineering module. In addition, we further analysis the time complexity of our KP-PCR that has lightweight prefix based the operation of introducing knowledge. Experimental results on the PCR dataset for the period 2011-2023 demonstrate that our KP-PCR outperforms baselines by 8.3%-28.8% in the request necessity prediction and by 0.1%-29.5% in the tag recommendation. The code implementation is released at https://github.com/WUT-IDEA/KP-PCR.
Abstract:This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting downstream machine learning tasks. First, we propose formulating convolutional kernel learning for univariate time series as a sparse regression problem with a non-negative constraint, leveraging the properties of circular convolution and circulant matrices. Second, to generalize this approach to multivariate and multidimensional time series data, we use tensor computations, reformulating the convolutional kernel learning problem in the form of tensors. This is further converted into a standard sparse regression problem through vectorization and tensor unfolding operations. In the proposed methodology, the optimization problem is addressed using the existing non-negative subspace pursuit method, enabling the convolutional kernel to capture temporal correlations and patterns. To evaluate the proposed model, we apply it to several real-world time series datasets. On the multidimensional rideshare and taxi trip data from New York City and Chicago, the convolutional kernels reveal interpretable local correlations and cyclical patterns, such as weekly seasonality. In the context of multidimensional fluid flow data, both local and nonlocal correlations captured by the convolutional kernels can reinforce tensor factorization, leading to performance improvements in fluid flow reconstruction tasks. Thus, this study lays an insightful foundation for automatically learning convolutional kernels from time series data, with an emphasis on interpretability through sparsity and non-negativity constraints.
Abstract:Despite significant breakthroughs in video analysis driven by the rapid development of large multimodal models (LMMs), there remains a lack of a versatile evaluation benchmark to comprehensively assess these models' performance in video understanding and reasoning. To address this, we present VideoVista, a video QA benchmark that integrates challenges across diverse content categories, durations, and abilities. Specifically, VideoVista comprises 25,000 questions derived from 3,400 videos spanning 14 categories (e.g., Howto, Film, and Entertainment) with durations ranging from a few seconds to over 10 minutes. Besides, it encompasses 19 types of understanding tasks (e.g., anomaly detection, interaction understanding) and 8 reasoning tasks (e.g., logical reasoning, causal reasoning). To achieve this, we present an automatic data construction framework, leveraging powerful GPT-4o alongside advanced analysis tools (e.g., video splitting, object segmenting, and tracking). We also utilize this framework to construct training data to enhance the capabilities of video-related LMMs (Video-LMMs). Through a comprehensive and quantitative evaluation of cutting-edge models, we reveal that: 1) Video-LMMs face difficulties in fine-grained video tasks involving temporal location, object tracking, and anomaly detection; 2) Video-LMMs present inferior logical and relation reasoning abilities; 3) Open-source Video-LMMs' performance is significantly lower than GPT-4o and Gemini-1.5, lagging by 20 points. This highlights the crucial role VideoVista will play in advancing LMMs that can accurately understand videos and perform precise reasoning.
Abstract:Public Code Review (PCR) can be implemented through a Software Question Answering (SQA) community, which facilitates high knowledge dissemination. Current methods mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. Our intuition is that satisfying review necessity requests can increase their visibility, which in turn is a prerequisite for better review responses. To this end, we propose a unified framework called UniPCR to complete developer-based request quality assurance (i.e., predicting request necessity and recommending tags subtask) under a Masked Language Model (MLM). Specifically, we reformulate both subtasks via 1) text prompt tuning, which converts two subtasks into MLM by constructing prompt templates using hard prompt; 2) code prefix tuning, which optimizes a small segment of generated continuous vectors as the prefix of the code representation using soft prompt. Experimental results on the Public Code Review dataset for the time span 2011-2022 demonstrate that our UniPCR framework adapts to the two subtasks and outperforms comparable accuracy-based results with state-of-the-art methods for request quality assurance. These conclusions highlight the effectiveness of our unified framework from the developer's perspective in public code review.
Abstract:Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in long and short video understandings.
Abstract:Evaluating and Rethinking the current landscape of Large Multimodal Models (LMMs), we observe that widely-used visual-language projection approaches (e.g., Q-former or MLP) focus on the alignment of image-text descriptions yet ignore the visual knowledge-dimension alignment, i.e., connecting visuals to their relevant knowledge. Visual knowledge plays a significant role in analyzing, inferring, and interpreting information from visuals, helping improve the accuracy of answers to knowledge-based visual questions. In this paper, we mainly explore improving LMMs with visual-language knowledge alignment, especially aimed at challenging knowledge-based visual question answering (VQA). To this end, we present a Cognitive Visual-Language Mapper (CVLM), which contains a pretrained Visual Knowledge Aligner (VKA) and a Fine-grained Knowledge Adapter (FKA) used in the multimodal instruction tuning stage. Specifically, we design the VKA based on the interaction between a small language model and a visual encoder, training it on collected image-knowledge pairs to achieve visual knowledge acquisition and projection. FKA is employed to distill the fine-grained visual knowledge of an image and inject it into Large Language Models (LLMs). We conduct extensive experiments on knowledge-based VQA benchmarks and experimental results show that CVLM significantly improves the performance of LMMs on knowledge-based VQA (average gain by 5.0%). Ablation studies also verify the effectiveness of VKA and FKA, respectively.
Abstract:The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Extensive experiments indicate that GPT-4V achieves SOTA performance on above three tasks. Interestingly, we find that: a) GPT-4V demonstrates enhanced reasoning and explanation when using composite images as few-shot; b) GPT-4V produces severe hallucinations when dealing with world knowledge, highlighting the future need for advancements in this research direction.
Abstract:Target-oriented grasping in unstructured scenes with language control is essential for intelligent robot arm grasping. The ability for the robot arm to understand the human language and execute corresponding grasping actions is a pivotal challenge. In this paper, we propose a combination model called QwenGrasp which combines a large vision-language model with a 6-DoF grasp neural network. QwenGrasp is able to conduct a 6-DoF grasping task on the target object with textual language instruction. We design a complete experiment with six-dimension instructions to test the QwenGrasp when facing with different cases. The results show that QwenGrasp has a superior ability to comprehend the human intention. Even in the face of vague instructions with descriptive words or instructions with direction information, the target object can be grasped accurately. When QwenGrasp accepts the instruction which is not feasible or not relevant to the grasping task, our approach has the ability to suspend the task execution and provide a proper feedback to humans, improving the safety. In conclusion, with the great power of large vision-language model, QwenGrasp can be applied in the open language environment to conduct the target-oriented grasping task with freely input instructions.
Abstract:In this paper, we measure the linear separability of hidden layer outputs to study the characteristics of deep neural networks. In particular, we first propose Minkowski difference based linear separability measures (MD-LSMs) to evaluate the linear separability degree of two points sets. Then, we demonstrate that there is a synchronicity between the linear separability degree of hidden layer outputs and the network training performance, i.e., if the updated weights can enhance the linear separability degree of hidden layer outputs, the updated network will achieve a better training performance, and vice versa. Moreover, we study the effect of activation function and network size (including width and depth) on the linear separability of hidden layers. Finally, we conduct the numerical experiments to validate our findings on some popular deep networks including multilayer perceptron (MLP), convolutional neural network (CNN), deep belief network (DBN), ResNet, VGGNet, AlexNet, vision transformer (ViT) and GoogLeNet.