Abstract:In this paper, we propose a novel multi-view stereo (MVS) framework that gets rid of the depth range prior. Unlike recent prior-free MVS methods that work in a pair-wise manner, our method simultaneously considers all the source images. Specifically, we introduce a Multi-view Disparity Attention (MDA) module to aggregate long-range context information within and across multi-view images. Considering the asymmetry of the epipolar disparity flow, the key to our method lies in accurately modeling multi-view geometric constraints. We integrate pose embedding to encapsulate information such as multi-view camera poses, providing implicit geometric constraints for multi-view disparity feature fusion dominated by attention. Additionally, we construct corresponding hidden states for each source image due to significant differences in the observation quality of the same pixel in the reference frame across multiple source frames. We explicitly estimate the quality of the current pixel corresponding to sampled points on the epipolar line of the source image and dynamically update hidden states through the uncertainty estimation module. Extensive results on the DTU dataset and Tanks&Temple benchmark demonstrate the effectiveness of our method. The code is available at our project page: https://zju3dv.github.io/GD-PoseMVS/.
Abstract:We tackle the efficiency problem of learning local feature matching. Recent advancements have given rise to purely CNN-based and transformer-based approaches, each augmented with deep learning techniques. While CNN-based methods often excel in matching speed, transformer-based methods tend to provide more accurate matches. We propose an efficient transformer-based network architecture for local feature matching. This technique is built on constructing multiple homography hypotheses to approximate the continuous correspondence in the real world and uni-directional cross-attention to accelerate the refinement. On the YFCC100M dataset, our matching accuracy is competitive with LoFTR, a state-of-the-art transformer-based architecture, while the inference speed is boosted to 4 times, even outperforming the CNN-based methods. Comprehensive evaluations on other open datasets such as Megadepth, ScanNet, and HPatches demonstrate our method's efficacy, highlighting its potential to significantly enhance a wide array of downstream applications.
Abstract:Recent advances in event-based vision suggest that these systems complement traditional cameras by providing continuous observation without frame rate limitations and a high dynamic range, making them well-suited for correspondence tasks such as optical flow and point tracking. However, there is still a lack of comprehensive benchmarks for correspondence tasks that include both event data and images. To address this gap, we propose BlinkVision, a large-scale and diverse benchmark with multiple modalities and dense correspondence annotations. BlinkVision offers several valuable features: 1) Rich modalities: It includes both event data and RGB images. 2) Extensive annotations: It provides dense per-pixel annotations covering optical flow, scene flow, and point tracking. 3) Large vocabulary: It contains 410 everyday categories, sharing common classes with popular 2D and 3D datasets like LVIS and ShapeNet. 4) Naturalistic: It delivers photorealistic data and covers various naturalistic factors, such as camera shake and deformation. BlinkVision enables extensive benchmarks on three types of correspondence tasks (optical flow, point tracking, and scene flow estimation) for both image-based and event-based methods, offering new observations, practices, and insights for future research. The benchmark website is https://www.blinkvision.net/.
Abstract:Feature tracking is crucial for, structure from motion (SFM), simultaneous localization and mapping (SLAM), object tracking and various computer vision tasks. Event cameras, known for their high temporal resolution and ability to capture asynchronous changes, have gained significant attention for their potential in feature tracking, especially in challenging conditions. However, event cameras lack the fine-grained texture information that conventional cameras provide, leading to error accumulation in tracking. To address this, we propose a novel framework, BlinkTrack, which integrates event data with RGB images for high-frequency feature tracking. Our method extends the traditional Kalman filter into a learning-based framework, utilizing differentiable Kalman filters in both event and image branches. This approach improves single-modality tracking, resolves ambiguities, and supports asynchronous data fusion. We also introduce new synthetic and augmented datasets to better evaluate our model. Experimental results indicate that BlinkTrack significantly outperforms existing event-based methods, exceeding 100 FPS with preprocessed event data and 80 FPS with multi-modality data.
Abstract:Atomic Force Microscopy (AFM) is a widely employed tool for micro-/nanoscale topographic imaging. However, conventional AFM scanning struggles to reconstruct complex 3D micro-/nanostructures precisely due to limitations such as incomplete sample topography capturing and tip-sample convolution artifacts. Here, we propose a multi-view neural-network-based framework with AFM (MVN-AFM), which accurately reconstructs surface models of intricate micro-/nanostructures. Unlike previous works, MVN-AFM does not depend on any specially shaped probes or costly modifications to the AFM system. To achieve this, MVN-AFM uniquely employs an iterative method to align multi-view data and eliminate AFM artifacts simultaneously. Furthermore, we pioneer the application of neural implicit surface reconstruction in nanotechnology and achieve markedly improved results. Extensive experiments show that MVN-AFM effectively eliminates artifacts present in raw AFM images and reconstructs various micro-/nanostructures including complex geometrical microstructures printed via Two-photon Lithography and nanoparticles such as PMMA nanospheres and ZIF-67 nanocrystals. This work presents a cost-effective tool for micro-/nanoscale 3D analysis.
Abstract:Different from traditional video cameras, event cameras capture asynchronous events stream in which each event encodes pixel location, trigger time, and the polarity of the brightness changes. In this paper, we introduce a novel graph-based framework for event cameras, namely SlideGCN. Unlike some recent graph-based methods that use groups of events as input, our approach can efficiently process data event-by-event, unlock the low latency nature of events data while still maintaining the graph's structure internally. For fast graph construction, we develop a radius search algorithm, which better exploits the partial regular structure of event cloud against k-d tree based generic methods. Experiments show that our method reduces the computational complexity up to 100 times with respect to current graph-based methods while keeping state-of-the-art performance on object recognition. Moreover, we verify the superiority of event-wise processing with our method. When the state becomes stable, we can give a prediction with high confidence, thus making an early recognition. Project page: \url{https://zju3dv.github.io/slide_gcn/}.
Abstract:Light-weight time-of-flight (ToF) depth sensors are compact and cost-efficient, and thus widely used on mobile devices for tasks such as autofocus and obstacle detection. However, due to the sparse and noisy depth measurements, these sensors have rarely been considered for dense geometry reconstruction. In this work, we present the first dense SLAM system with a monocular camera and a light-weight ToF sensor. Specifically, we propose a multi-modal implicit scene representation that supports rendering both the signals from the RGB camera and light-weight ToF sensor which drives the optimization by comparing with the raw sensor inputs. Moreover, in order to guarantee successful pose tracking and reconstruction, we exploit a predicted depth as an intermediate supervision and develop a coarse-to-fine optimization strategy for efficient learning of the implicit representation. At last, the temporal information is explicitly exploited to deal with the noisy signals from light-weight ToF sensors to improve the accuracy and robustness of the system. Experiments demonstrate that our system well exploits the signals of light-weight ToF sensors and achieves competitive results both on camera tracking and dense scene reconstruction. Project page: \url{https://zju3dv.github.io/tof_slam/}.
Abstract:We present DiffRoom, a novel framework for tackling the problem of high-quality 3D indoor room reconstruction and generation, both of which are challenging due to the complexity and diversity of the room geometry. Although diffusion-based generative models have previously demonstrated impressive performance in image generation and object-level 3D generation, they have not yet been applied to room-level 3D generation due to their computationally intensive costs. In DiffRoom, we propose a sparse 3D diffusion network that is efficient and possesses strong generative performance for Truncated Signed Distance Field (TSDF), based on a rough occupancy prior. Inspired by KinectFusion's incremental alignment and fusion of local SDFs, we propose a diffusion-based TSDF fusion approach that iteratively diffuses and fuses TSDFs, facilitating the reconstruction and generation of an entire room environment. Additionally, to ease training, we introduce a curriculum diffusion learning paradigm that speeds up the training convergence process and enables high-quality reconstruction. According to the user study, the mesh quality generated by our DiffRoom can even outperform the ground truth mesh provided by ScanNet. Please visit our project page for the latest progress and demonstrations: https://akirahero.github.io/DiffRoom/.
Abstract:This paper introduces a novel transformer-based network architecture, FlowFormer, along with the Masked Cost Volume AutoEncoding (MCVA) for pretraining it to tackle the problem of optical flow estimation. FlowFormer tokenizes the 4D cost-volume built from the source-target image pair and iteratively refines flow estimation with a cost-volume encoder-decoder architecture. The cost-volume encoder derives a cost memory with alternate-group transformer~(AGT) layers in a latent space and the decoder recurrently decodes flow from the cost memory with dynamic positional cost queries. On the Sintel benchmark, FlowFormer architecture achieves 1.16 and 2.09 average end-point-error~(AEPE) on the clean and final pass, a 16.5\% and 15.5\% error reduction from the GMA~(1.388 and 2.47). MCVA enhances FlowFormer by pretraining the cost-volume encoder with a masked autoencoding scheme, which further unleashes the capability of FlowFormer with unlabeled data. This is especially critical in optical flow estimation because ground truth flows are more expensive to acquire than labels in other vision tasks. MCVA improves FlowFormer all-sided and FlowFormer+MCVA ranks 1st among all published methods on both Sintel and KITTI-2015 benchmarks and achieves the best generalization performance. Specifically, FlowFormer+MCVA achieves 1.07 and 1.94 AEPE on the Sintel benchmark, leading to 7.76\% and 7.18\% error reductions from FlowFormer.
Abstract:We tackle the problem of Tracking Any Point (TAP) in videos, which specifically aims at estimating persistent long-term trajectories of query points in videos. Previous methods attempted to estimate these trajectories independently to incorporate longer image sequences, therefore, ignoring the potential benefits of incorporating spatial context features. We argue that independent video point tracking also demands spatial context features. To this end, we propose a novel framework Context-TAP, which effectively improves point trajectory accuracy by aggregating spatial context features in videos. Context-TAP contains two main modules: 1) a SOurse Feature Enhancement (SOFE) module, and 2) a TArget Feature Aggregation (TAFA) module. Context-TAP significantly improves PIPs all-sided, reducing 11.4% Average Trajectory Error of Occluded Points (ATE-Occ) on CroHD and increasing 11.8% Average Percentage of Correct Keypoint (A-PCK) on TAP-Vid-Kinectics. Demos are available at this $\href{https://wkbian.github.io/Projects/Context-TAP/}{webpage}$.