Microsoft Research
Abstract:Generating synthetic datasets via large language models (LLMs) themselves has emerged as a promising approach to improve LLM performance. However, LLMs inherently reflect biases present in their training data, leading to a critical challenge: when these models generate synthetic data for training, they may propagate and amplify their inherent biases that can significantly impact model fairness and robustness on downstream tasks--a phenomenon we term bias inheritance. This work presents the first systematic investigation in understanding, analyzing, and mitigating bias inheritance. We study this problem by fine-tuning LLMs with a combined dataset consisting of original and LLM-augmented data, where bias ratio represents the proportion of augmented data. Through systematic experiments across 10 classification and generation tasks, we analyze how 6 different types of biases manifest at varying bias ratios. Our results reveal that bias inheritance has nuanced effects on downstream tasks, influencing both classification tasks and generation tasks differently. Then, our analysis identifies three key misalignment factors: misalignment of values, group data, and data distributions. Based on these insights, we propose three mitigation strategies: token-based, mask-based, and loss-based approaches. Experiments demonstrate that these strategies also work differently on various tasks and bias, indicating the substantial challenges to fully mitigate bias inheritance. We hope this work can provide valuable insights to the research of LLM data augmentation.
Abstract:Diffusion models generate high-quality images but often lack efficient and universally applicable inpainting capabilities, particularly in community-trained models. We introduce LanPaint, a training-free method tailored for widely adopted ODE-based samplers, which leverages Langevin dynamics to perform exact conditional inference, enabling precise and visually coherent inpainting. LanPaint addresses two key challenges in Langevin-based inpainting: (1) the risk of local likelihood maxima trapping and (2) slow convergence. By proposing a guided score function and a fast-converging Langevin framework, LanPaint achieves high-fidelity results in very few iterations. Experiments demonstrate that LanPaint outperforms existing training-free inpainting techniques, outperforming in challenging tasks such as outpainting with Stable Diffusion.
Abstract:Image restoration aims to recover details and enhance contrast in degraded images. With the growing demand for high-quality imaging (\textit{e.g.}, 4K and 8K), achieving a balance between restoration quality and computational efficiency has become increasingly critical. Existing methods, primarily based on CNNs, Transformers, or their hybrid approaches, apply uniform deep representation extraction across the image. However, these methods often struggle to effectively model long-range dependencies and largely overlook the spatial characteristics of image degradation (regions with richer textures tend to suffer more severe damage), making it hard to achieve the best trade-off between restoration quality and efficiency. To address these issues, we propose a novel texture-aware image restoration method, TAMambaIR, which simultaneously perceives image textures and achieves a trade-off between performance and efficiency. Specifically, we introduce a novel Texture-Aware State Space Model, which enhances texture awareness and improves efficiency by modulating the transition matrix of the state-space equation and focusing on regions with complex textures. Additionally, we design a {Multi-Directional Perception Block} to improve multi-directional receptive fields while maintaining low computational overhead. Extensive experiments on benchmarks for image super-resolution, deraining, and low-light image enhancement demonstrate that TAMambaIR achieves state-of-the-art performance with significantly improved efficiency, establishing it as a robust and efficient framework for image restoration.
Abstract:Numerous studies have shown that label noise can lead to poor generalization performance, negatively affecting classification accuracy. Therefore, understanding the effectiveness of classifiers trained using deep neural networks in the presence of noisy labels is of considerable practical significance. In this paper, we focus on the error bounds of excess risks for classification problems with noisy labels within deep learning frameworks. We begin by exploring loss functions with noise-tolerant properties, ensuring that the empirical minimizer on noisy data aligns with that on the true data. Next, we estimate the error bounds of the excess risks, expressed as a sum of statistical error and approximation error. We estimate the statistical error on a dependent (mixing) sequence, bounding it with the help of the associated independent block sequence. For the approximation error, we first express the classifiers as the composition of the softmax function and a continuous function from $[0,1]^d$ to $\mathbb{R}^K$. The main task is then to estimate the approximation error for the continuous function from $[0,1]^d$ to $\mathbb{R}^K$. Finally, we focus on the curse of dimensionality based on the low-dimensional manifold assumption.
Abstract:The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.
Abstract:Transformer-based methods have achieved remarkable performance in event-based object detection, owing to the global modeling ability. However, they neglect the influence of non-event and noisy regions and process them uniformly, leading to high computational overhead. To mitigate computation cost, some researchers propose window attention based sparsification strategies to discard unimportant regions, which sacrifices the global modeling ability and results in suboptimal performance. To achieve better trade-off between accuracy and efficiency, we propose Sparse Mamba (SMamba), which performs adaptive sparsification to reduce computational effort while maintaining global modeling capability. Specifically, a Spatio-Temporal Continuity Assessment module is proposed to measure the information content of tokens and discard uninformative ones by leveraging the spatiotemporal distribution differences between activity and noise events. Based on the assessment results, an Information-Prioritized Local Scan strategy is designed to shorten the scan distance between high-information tokens, facilitating interactions among them in the spatial dimension. Furthermore, to extend the global interaction from 2D space to 3D representations, a Global Channel Interaction module is proposed to aggregate channel information from a global spatial perspective. Results on three datasets (Gen1, 1Mpx, and eTram) demonstrate that our model outperforms other methods in both performance and efficiency.
Abstract:The emergence of neural network capabilities invariably leads to a significant surge in computational demands due to expanding model sizes and increased computational complexity. To reduce model size and lower inference costs, recent research has focused on simplifying models and designing hardware accelerators using low-bit quantization. However, due to numerical representation limits, scalar quantization cannot reduce bit width lower than 1-bit, diminishing its benefits. To break through these limitations, we introduce LUT-DLA, a Look-Up Table (LUT) Deep Learning Accelerator Framework that utilizes vector quantization to convert neural network models into LUTs, achieving extreme low-bit quantization. The LUT-DLA framework facilitates efficient and cost-effective hardware accelerator designs and supports the LUTBoost algorithm, which helps to transform various DNN models into LUT-based models via multistage training, drastically cutting both computational and hardware overhead. Additionally, through co-design space exploration, LUT-DLA assesses the impact of various model and hardware parameters to fine-tune hardware configurations for different application scenarios, optimizing performance and efficiency. Our comprehensive experiments show that LUT-DLA achieves improvements in power efficiency and area efficiency with gains of $1.4$~$7.0\times$ and $1.5$~$146.1\times$, respectively, while maintaining only a modest accuracy drop. For CNNs, accuracy decreases by $0.1\%$~$3.1\%$ using the $L_2$ distance similarity, $0.1\%$~$3.4\%$ with the $L_1$ distance similarity, and $0.1\%$~$3.8\%$ when employing the Chebyshev distance similarity. For transformer-based models, the accuracy drop ranges from $1.4\%$ to $3.0\%$.
Abstract:Recent advancements in natural language processing have highlighted the vulnerability of deep learning models to adversarial attacks. While various defence mechanisms have been proposed, there is a lack of comprehensive benchmarks that evaluate these defences across diverse datasets, models, and tasks. In this work, we address this gap by presenting an extensive benchmark for textual adversarial defence that significantly expands upon previous work. Our benchmark incorporates a wide range of datasets, evaluates state-of-the-art defence mechanisms, and extends the assessment to include critical tasks such as single-sentence classification, similarity and paraphrase identification, natural language inference, and commonsense reasoning. This work not only serves as a valuable resource for researchers and practitioners in the field of adversarial robustness but also identifies key areas for future research in textual adversarial defence. By establishing a new standard for benchmarking in this domain, we aim to accelerate progress towards more robust and reliable natural language processing systems.
Abstract:3D terrain reconstruction with remote sensing imagery achieves cost-effective and large-scale earth observation and is crucial for safeguarding natural disasters, monitoring ecological changes, and preserving the environment.Recently, learning-based multi-view stereo~(MVS) methods have shown promise in this task. However, these methods simply modify the general learning-based MVS framework for height estimation, which overlooks the terrain characteristics and results in insufficient accuracy. Considering that the Earth's surface generally undulates with no drastic changes and can be measured by slope, integrating slope considerations into MVS frameworks could enhance the accuracy of terrain reconstructions. To this end, we propose an end-to-end slope-aware height estimation network named TS-SatMVSNet for large-scale remote sensing terrain reconstruction.To effectively obtain the slope representation, drawing from mathematical gradient concepts, we innovatively proposed a height-based slope calculation strategy to first calculate a slope map from a height map to measure the terrain undulation. To fully integrate slope information into the MVS pipeline, we separately design two slope-guided modules to enhance reconstruction outcomes at both micro and macro levels. Specifically, at the micro level, we designed a slope-guided interval partition module for refined height estimation using slope values. At the macro level, a height correction module is proposed, using a learnable Gaussian smoothing operator to amend the inaccurate height values. Additionally, to enhance the efficacy of height estimation, we proposed a slope direction loss for implicitly optimizing height estimation results. Extensive experiments on the WHU-TLC dataset and MVS3D dataset show that our proposed method achieves state-of-the-art performance and demonstrates competitive generalization ability.
Abstract:Unsupervised Domain Adaptive (UDA) person search focuses on employing the model trained on a labeled source domain dataset to a target domain dataset without any additional annotations. Most effective UDA person search methods typically utilize the ground truth of the source domain and pseudo-labels derived from clustering during the training process for domain adaptation. However, the performance of these approaches will be significantly restricted by the disrupting pseudo-labels resulting from inter-domain disparities. In this paper, we propose a Dual Self-Calibration (DSCA) framework for UDA person search that effectively eliminates the interference of noisy pseudo-labels by considering both the image-level and instance-level features perspectives. Specifically, we first present a simple yet effective Perception-Driven Adaptive Filter (PDAF) to adaptively predict a dynamic filter threshold based on input features. This threshold assists in eliminating noisy pseudo-boxes and other background interference, allowing our approach to focus on foreground targets and avoid indiscriminate domain adaptation. Besides, we further propose a Cluster Proxy Representation (CPR) module to enhance the update strategy of cluster representation, which mitigates the pollution of clusters from misidentified instances and effectively streamlines the training process for unlabeled target domains. With the above design, our method can achieve state-of-the-art (SOTA) performance on two benchmark datasets, with 80.2% mAP and 81.7% top-1 on the CUHK-SYSU dataset, with 39.9% mAP and 81.6% top-1 on the PRW dataset, which is comparable to or even exceeds the performance of some fully supervised methods. Our source code is available at https://github.com/whbdmu/DSCA.