Abstract:The process generates substantial amounts of data with highly complex structures, leading to the development of numerous nonlinear statistical methods. However, most of these methods rely on computations involving large-scale dense kernel matrices. This dependence poses significant challenges in meeting the high computational demands and real-time responsiveness required by online monitoring systems. To alleviate the computational burden of dense large-scale matrix multiplication, we incorporate the bootstrap sampling concept into random feature mapping and propose a novel random Bernoulli principal component analysis method to efficiently capture nonlinear patterns in the process. We derive a convergence bound for the kernel matrix approximation constructed using random Bernoulli features, ensuring theoretical robustness. Subsequently, we design four fast process monitoring methods based on random Bernoulli principal component analysis to extend its nonlinear capabilities for handling diverse fault scenarios. Finally, numerical experiments and real-world data analyses are conducted to evaluate the performance of the proposed methods. Results demonstrate that the proposed methods offer excellent scalability and reduced computational complexity, achieving substantial cost savings with minimal performance loss compared to traditional kernel-based approaches.
Abstract:Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.
Abstract:In this report, we introduce Gemini Embedding, a state-of-the-art embedding model leveraging the power of Gemini, Google's most capable large language model. Capitalizing on Gemini's inherent multilingual and code understanding capabilities, Gemini Embedding produces highly generalizable embeddings for text spanning numerous languages and textual modalities. The representations generated by Gemini Embedding can be precomputed and applied to a variety of downstream tasks including classification, similarity, clustering, ranking, and retrieval. Evaluated on the Massive Multilingual Text Embedding Benchmark (MMTEB), which includes over one hundred tasks across 250+ languages, Gemini Embedding substantially outperforms prior state-of-the-art models, demonstrating considerable improvements in embedding quality. Achieving state-of-the-art performance across MMTEB's multilingual, English, and code benchmarks, our unified model demonstrates strong capabilities across a broad selection of tasks and surpasses specialized domain-specific models.
Abstract:In open-world remote sensing, deployed models must continuously adapt to a steady influx of new data, which often exhibits various shifts compared to what the model encountered during the training phase. To effectively handle the new data, models are required to detect semantic shifts, adapt to covariate shifts, and continuously update themselves. These challenges give rise to a variety of open-world tasks. However, existing open-world remote sensing studies typically train and test within a single dataset to simulate open-world conditions. Currently, there is a lack of large-scale benchmarks capable of evaluating multiple open-world tasks. In this paper, we introduce OpenEarthSensing, a large-scale fine-grained benchmark for open-world remote sensing. OpenEarthSensing includes 189 scene and objects categories, covering the vast majority of potential semantic shifts that may occur in the real world. Additionally, OpenEarthSensing encompasses five data domains with significant covariate shifts, including two RGB satellite domians, one RGB aerial domian, one MS RGB domian, and one infrared domian. The various domains provide a more comprehensive testbed for evaluating the generalization performance of open-world models. We conduct the baseline evaluation of current mainstream open-world tasks and methods on OpenEarthSensing, demonstrating that it serves as a challenging benchmark for open-world remote sensing.
Abstract:Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81$\times$ (16.95$\times$), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B).
Abstract:Privacy concerns have led to the rise of federated recommender systems (FRS), which can create personalized models across distributed clients. However, FRS is vulnerable to poisoning attacks, where malicious users manipulate gradients to promote their target items intentionally. Existing attacks against FRS have limitations, as they depend on specific models and prior knowledge, restricting their real-world applicability. In our exploration of practical FRS vulnerabilities, we devise a model-agnostic and prior-knowledge-free attack, named PIECK (Popular Item Embedding based Attack). The core module of PIECK is popular item mining, which leverages embedding changes during FRS training to effectively identify the popular items. Built upon the core module, PIECK branches into two diverse solutions: The PIECKIPE solution employs an item popularity enhancement module, which aligns the embeddings of targeted items with the mined popular items to increase item exposure. The PIECKUEA further enhances the robustness of the attack by using a user embedding approximation module, which approximates private user embeddings using mined popular items. Upon identifying PIECK, we evaluate existing federated defense methods and find them ineffective against PIECK, as poisonous gradients inevitably overwhelm the cold target items. We then propose a novel defense method by introducing two regularization terms during user training, which constrain item popularity enhancement and user embedding approximation while preserving FRS performance. We evaluate PIECK and its defense across two base models, three real datasets, four top-tier attacks, and six general defense methods, affirming the efficacy of both PIECK and its defense.
Abstract:Offline preference-based reinforcement learning (PbRL) typically operates in two phases: first, use human preferences to learn a reward model and annotate rewards for a reward-free offline dataset; second, learn a policy by optimizing the learned reward via offline RL. However, accurately modeling step-wise rewards from trajectory-level preference feedback presents inherent challenges. The reward bias introduced, particularly the overestimation of predicted rewards, leads to optimistic trajectory stitching, which undermines the pessimism mechanism critical to the offline RL phase. To address this challenge, we propose In-Dataset Trajectory Return Regularization (DTR) for offline PbRL, which leverages conditional sequence modeling to mitigate the risk of learning inaccurate trajectory stitching under reward bias. Specifically, DTR employs Decision Transformer and TD-Learning to strike a balance between maintaining fidelity to the behavior policy with high in-dataset trajectory returns and selecting optimal actions based on high reward labels. Additionally, we introduce an ensemble normalization technique that effectively integrates multiple reward models, balancing the tradeoff between reward differentiation and accuracy. Empirical evaluations on various benchmarks demonstrate the superiority of DTR over other state-of-the-art baselines
Abstract:Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, which involves three main steps: data fabric, data exploration, and result reporting. We summarize existing versatile forms of SV used in these steps by a unified definition and clarify the essential functionalities that SV can provide for data scientists. We categorize the arts in this field based on the technical challenges they tackled, which include computation efficiency, approximation error, privacy preservation, and appropriate interpretations. We discuss these challenges and analyze the corresponding solutions. We also implement SVBench, the first open-sourced benchmark for developing SV applications, and conduct experiments on six DA tasks to validate our analysis and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.
Abstract:Diffeomorphic image registration is crucial for various medical imaging applications because it can preserve the topology of the transformation. This study introduces DCCNN-LSTM-Reg, a learning framework that evolves dynamically and learns a symmetrical registration path by satisfying a specified control increment system. This framework aims to obtain symmetric diffeomorphic deformations between moving and fixed images. To achieve this, we combine deep learning networks with diffeomorphic mathematical mechanisms to create a continuous and dynamic registration architecture, which consists of multiple Symmetric Registration (SR) modules cascaded on five different scales. Specifically, our method first uses two U-nets with shared parameters to extract multiscale feature pyramids from the images. We then develop an SR-module comprising a sequential CNN-LSTM architecture to progressively correct the forward and reverse multiscale deformation fields using control increment learning and the homotopy continuation technique. Through extensive experiments on three 3D registration tasks, we demonstrate that our method outperforms existing approaches in both quantitative and qualitative evaluations.
Abstract:Deep-learning methods have shown promising performance for low-dose computed tomography (LDCT) reconstruction. However, supervised methods face the problem of lacking labeled data in clinical scenarios, and the CNN-based unsupervised denoising methods would cause excessive smoothing in the reconstructed image. Recently, the normalizing flows (NFs) based methods have shown advantages in producing detail-rich images and avoiding over-smoothing, however, there are still issues: (1) Although the alternating optimization in the data and latent space can well utilize the regularization and generation capabilities of NFs, the current two-way transformation strategy of noisy images and latent variables would cause detail loss and secondary artifacts; and (2) Training NFs on high-resolution CT images is hard due to huge computation. Though using conditional normalizing flows (CNFs) to learn conditional probability can reduce the computational burden, current methods require labeled data for conditionalization, and the unsupervised CNFs-based LDCT reconstruction remains a problem. To tackle these problems, we propose a novel CNFs-based unsupervised LDCT iterative reconstruction algorithm. It employs strict one-way transformation when performing alternating optimization in the dual spaces, thus effectively avoiding the problems of detail loss and secondary artifacts. By proposing a novel unsupervised conditionalization strategy, we train CNFs on high-resolution CT images, thus achieving fast and high-quality unsupervised reconstruction. Experiments on different datasets suggest that the performance of the proposed algorithm could surpass some state-of-the-art unsupervised and even supervised methods.