Abstract:Over the recent years, Shapley value (SV), a solution concept from cooperative game theory, has found numerous applications in data analytics (DA). This paper provides the first comprehensive study of SV used throughout the DA workflow, which involves three main steps: data fabric, data exploration, and result reporting. We summarize existing versatile forms of SV used in these steps by a unified definition and clarify the essential functionalities that SV can provide for data scientists. We categorize the arts in this field based on the technical challenges they tackled, which include computation efficiency, approximation error, privacy preservation, and appropriate interpretations. We discuss these challenges and analyze the corresponding solutions. We also implement SVBench, the first open-sourced benchmark for developing SV applications, and conduct experiments on six DA tasks to validate our analysis and discussions. Based on the qualitative and quantitative results, we identify the limitations of current efforts for applying SV to DA and highlight the directions of future research and engineering.
Abstract:Schema and entity matching tasks are crucial for data integration and management. While large language models (LLMs) have shown promising results in these tasks, they suffer from hallucinations and confusion about task instructions. In this paper, we present the Knowledge-Compliant Matching Framework (KcMF), an LLM-based approach that addresses these issues without the need for domain-specific fine-tuning. KcMF employs a pseudo-code-based task decomposition strategy to adopt task-specific natural language statements that guide LLM reasoning and reduce confusion. We also propose two mechanisms, Dataset as Knowledge (DaK) and Example as Knowledge (EaK), to build domain knowledge sets when unstructured domain knowledge is lacking. Additionally, we introduce a result-ensembling strategy to leverage multiple knowledge sources and suppress poorly formatted outputs. Comprehensive evaluations on schema and entity matching tasks demonstrate that KcMF outperforms previous non-LLM state-of-the-art (SOTA) methods by an average F1 score of 22.9% and competes effectively with SOTA fine-tuned LLMs. Moreover, KcMF generalizes well across different LLMs.
Abstract:Machine learning (ML) on tabular data is ubiquitous, yet obtaining abundant high-quality tabular data for model training remains a significant obstacle. Numerous works have focused on tabular data augmentation (TDA) to enhance the original table with additional data, thereby improving downstream ML tasks. Recently, there has been a growing interest in leveraging the capabilities of generative AI for TDA. Therefore, we believe it is time to provide a comprehensive review of the progress and future prospects of TDA, with a particular emphasis on the trending generative AI. Specifically, we present an architectural view of the TDA pipeline, comprising three main procedures: pre-augmentation, augmentation, and post-augmentation. Pre-augmentation encompasses preparation tasks that facilitate subsequent TDA, including error handling, table annotation, table simplification, table representation, table indexing, table navigation, schema matching, and entity matching. Augmentation systematically analyzes current TDA methods, categorized into retrieval-based methods, which retrieve external data, and generation-based methods, which generate synthetic data. We further subdivide these methods based on the granularity of the augmentation process at the row, column, cell, and table levels. Post-augmentation focuses on the datasets, evaluation and optimization aspects of TDA. We also summarize current trends and future directions for TDA, highlighting promising opportunities in the era of generative AI. In addition, the accompanying papers and related resources are continuously updated and maintained in the GitHub repository at https://github.com/SuDIS-ZJU/awesome-tabular-data-augmentation to reflect ongoing advancements in the field.
Abstract:Federated learning (FL) is a promising approach for learning a model from data distributed on massive clients without exposing data privacy. It works effectively in the ideal federation where clients share homogeneous data distribution and learning behavior. However, FL may fail to function appropriately when the federation is not ideal, amid an unhealthy state called Negative Federated Learning (NFL), in which most clients gain no benefit from participating in FL. Many studies have tried to address NFL. However, their solutions either (1) predetermine to prevent NFL in the entire learning life-cycle or (2) tackle NFL in the aftermath of numerous learning rounds. Thus, they either (1) indiscriminately incur extra costs even if FL can perform well without such costs or (2) waste numerous learning rounds. Additionally, none of the previous work takes into account the clients who may be unwilling/unable to follow the proposed NFL solutions when using those solutions to upgrade an FL system in use. This paper introduces FL-GUARD, a holistic framework that can be employed on any FL system for tackling NFL in a run-time paradigm. That is, to dynamically detect NFL at the early stage (tens of rounds) of learning and then to activate recovery measures when necessary. Specifically, we devise a cost-effective NFL detection mechanism, which relies on an estimation of performance gain on clients. Only when NFL is detected, we activate the NFL recovery process, in which each client learns in parallel an adapted model when training the global model. Extensive experiment results confirm the effectiveness of FL-GUARD in detecting NFL and recovering from NFL to a healthy learning state. We also show that FL-GUARD is compatible with previous NFL solutions and robust against clients unwilling/unable to take any recovery measures.
Abstract:Multi-modal multi-label emotion recognition (MMER) aims to identify relevant emotions from multiple modalities. The challenge of MMER is how to effectively capture discriminative features for multiple labels from heterogeneous data. Recent studies are mainly devoted to exploring various fusion strategies to integrate multi-modal information into a unified representation for all labels. However, such a learning scheme not only overlooks the specificity of each modality but also fails to capture individual discriminative features for different labels. Moreover, dependencies of labels and modalities cannot be effectively modeled. To address these issues, this paper presents ContrAstive feature Reconstruction and AggregaTion (CARAT) for the MMER task. Specifically, we devise a reconstruction-based fusion mechanism to better model fine-grained modality-to-label dependencies by contrastively learning modal-separated and label-specific features. To further exploit the modality complementarity, we introduce a shuffle-based aggregation strategy to enrich co-occurrence collaboration among labels. Experiments on two benchmark datasets CMU-MOSEI and M3ED demonstrate the effectiveness of CARAT over state-of-the-art methods. Code is available at https://github.com/chengzju/CARAT.
Abstract:We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM, thereby maintaining output quality. The proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its fine-tuned models demonstrated a speedup up to 1.73$\times$.
Abstract:Federated Learning (FL) is a promising distributed learning paradigm, which allows a number of data owners (also called clients) to collaboratively learn a shared model without disclosing each client's data. However, FL may fail to proceed properly, amid a state that we call negative federated learning (NFL). This paper addresses the problem of negative federated learning. We formulate a rigorous definition of NFL and analyze its essential cause. We propose a novel framework called LINDT for tackling NFL in run-time. The framework can potentially work with any neural-network-based FL systems for NFL detection and recovery. Specifically, we introduce a metric for detecting NFL from the server. On occasion of NFL recovery, the framework makes adaptation to the federated model on each client's local data by learning a Layer-wise Intertwined Dual-model. Experiment results show that the proposed approach can significantly improve the performance of FL on local data in various scenarios of NFL.
Abstract:This paper addresses the problem of key phrase extraction from sentences. Existing state-of-the-art supervised methods require large amounts of annotated data to achieve good performance and generalization. Collecting labeled data is, however, often expensive. In this paper, we redefine the problem as question-answer extraction, and present SAMIE: Self-Asking Model for Information Ixtraction, a semi-supervised model which dually learns to ask and to answer questions by itself. Briefly, given a sentence $s$ and an answer $a$, the model needs to choose the most appropriate question $\hat q$; meanwhile, for the given sentence $s$ and same question $\hat q$ selected in the previous step, the model will predict an answer $\hat a$. The model can support few-shot learning with very limited supervision. It can also be used to perform clustering analysis when no supervision is provided. Experimental results show that the proposed method outperforms typical supervised methods especially when given little labeled data.