Abstract:In recent years, Multimodal Large Language Models (MLLMs) have demonstrated remarkable advancements in tasks such as visual question answering, visual understanding, and reasoning. However, this impressive progress relies on vast amounts of data collected from the internet, raising significant concerns about privacy and security. To address these issues, machine unlearning (MU) has emerged as a promising solution, enabling the removal of specific knowledge from an already trained model without requiring retraining from scratch. Although MU for MLLMs has gained attention, current evaluations of its efficacy remain incomplete, and the underlying problem is often poorly defined, which hinders the development of strategies for creating more secure and trustworthy systems. To bridge this gap, we introduce a benchmark, named PEBench, which includes a dataset of personal entities and corresponding general event scenes, designed to comprehensively assess the performance of MU for MLLMs. Through PEBench, we aim to provide a standardized and robust framework to advance research in secure and privacy-preserving multimodal models. We benchmarked 6 MU methods, revealing their strengths and limitations, and shedding light on key challenges and opportunities for MU in MLLMs.
Abstract:Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Abstract:Language models are strong few-shot learners and achieve good overall accuracy in text classification tasks, masking the fact that their results suffer from great class accuracy imbalance. We believe that the pursuit of overall accuracy should not come from enriching the strong classes, but from raising up the weak ones. To address the imbalance, we propose a post-hoc nonlinear integer programming based debiasing method that ensembles weight correction and membership correction to enable flexible rectifications of class probabilities at both class and sample levels, enhancing the performance of LLMs directly from their outputs. Evaluations with Llama-2-13B on seven text classification benchmarks show that our approach achieves state-of-the-art overall accuracy gains with balanced class accuracies. The resulted probability correction scheme demonstrates that sample-level corrections are necessary to elevate weak classes. In addition, due to effectively correcting weak classes, our method also brings significant performance gains to Llama-2-70B, especially on a biomedical domain task, demonstrating its effectiveness across both small and large model variants.
Abstract:Large Language Models (LLMs) have significantly advanced natural language processing with exceptional task generalization capabilities. Low-Rank Adaption (LoRA) offers a cost-effective fine-tuning solution, freezing the original model parameters and training only lightweight, low-rank adapter matrices. However, the memory footprint of LoRA is largely dominated by the original model parameters. To mitigate this, we propose LoRAM, a memory-efficient LoRA training scheme founded on the intuition that many neurons in over-parameterized LLMs have low training utility but are essential for inference. LoRAM presents a unique twist: it trains on a pruned (small) model to obtain pruned low-rank matrices, which are then recovered and utilized with the original (large) model for inference. Additionally, minimal-cost continual pre-training, performed by the model publishers in advance, aligns the knowledge discrepancy between pruned and original models. Our extensive experiments demonstrate the efficacy of LoRAM across various pruning strategies and downstream tasks. For a model with 70 billion parameters, LoRAM enables training on a GPU with only 20G HBM, replacing an A100-80G GPU for LoRA training and 15 GPUs for full fine-tuning. Specifically, QLoRAM implemented by structured pruning combined with 4-bit quantization, for LLaMA-3.1-70B (LLaMA-2-70B), reduces the parameter storage cost that dominates the memory usage in low-rank matrix training by 15.81$\times$ (16.95$\times$), while achieving dominant performance gains over both the original LLaMA-3.1-70B (LLaMA-2-70B) and LoRA-trained LLaMA-3.1-8B (LLaMA-2-13B).
Abstract:DiT-based video generation has achieved remarkable results, but research into enhancing existing models remains relatively unexplored. In this work, we introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos, named Enhance-A-Video. The core idea is enhancing the cross-frame correlations based on non-diagonal temporal attention distributions. Thanks to its simple design, our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning. Across various DiT-based video generation models, our approach demonstrates promising improvements in both temporal consistency and visual quality. We hope this research can inspire future explorations in video generation enhancement.
Abstract:Parameter generation has struggled to scale up for a long time, significantly limiting its range of applications. In this study, we introduce \textbf{R}ecurrent diffusion for large-scale \textbf{P}arameter \textbf{G}eneration, called \textbf{RPG}. We first divide the trained parameters into non-overlapping parts, after which a recurrent model is proposed to learn their relationships. The recurrent model's outputs, as conditions, are then fed into a diffusion model to generate the neural network parameters. Using only a single GPU, recurrent diffusion enables us to generate popular vision and language models such as ConvNeXt-L and LoRA parameters of LLaMA-7B. Meanwhile, across various architectures and tasks, the generated parameters consistently perform comparable results over trained networks. Notably, our approach also shows the potential to generate models for handling unseen tasks, which largely increases the practicality of parameter generation. Our code is available \href{https://github.com/NUS-HPC-AI-Lab/Recurrent-Parameter-Generation}{here}.
Abstract:Despite significant advancements in general-purpose AI agents, several challenges still hinder their practical application in real-world scenarios. First, the limited planning capabilities of Large Language Models (LLM) restrict AI agents from effectively solving complex tasks that require long-horizon planning. Second, general-purpose AI agents struggle to efficiently utilize domain-specific knowledge and human expertise. In this paper, we introduce the Standard Operational Procedure-guided Agent (SOP-agent), a novel framework for constructing domain-specific agents through pseudocode-style Standard Operational Procedures (SOPs) written in natural language. Formally, we represent a SOP as a decision graph, which is traversed to guide the agent in completing tasks specified by the SOP. We conduct extensive experiments across tasks in multiple domains, including decision-making, search and reasoning, code generation, data cleaning, and grounded customer service. The SOP-agent demonstrates excellent versatility, achieving performance superior to general-purpose agent frameworks and comparable to domain-specific agent systems. Additionally, we introduce the Grounded Customer Service Benchmark, the first benchmark designed to evaluate the grounded decision-making capabilities of AI agents in customer service scenarios based on SOPs.
Abstract:Vision and language are the two foundational senses for humans, and they build up our cognitive ability and intelligence. While significant breakthroughs have been made in AI language ability, artificial visual intelligence, especially the ability to generate and simulate the world we see, is far lagging behind. To facilitate the development and accessibility of artificial visual intelligence, we created Open-Sora, an open-source video generation model designed to produce high-fidelity video content. Open-Sora supports a wide spectrum of visual generation tasks, including text-to-image generation, text-to-video generation, and image-to-video generation. The model leverages advanced deep learning architectures and training/inference techniques to enable flexible video synthesis, which could generate video content of up to 15 seconds, up to 720p resolution, and arbitrary aspect ratios. Specifically, we introduce Spatial-Temporal Diffusion Transformer (STDiT), an efficient diffusion framework for videos that decouples spatial and temporal attention. We also introduce a highly compressive 3D autoencoder to make representations compact and further accelerate training with an ad hoc training strategy. Through this initiative, we aim to foster innovation, creativity, and inclusivity within the community of AI content creation. By embracing the open-source principle, Open-Sora democratizes full access to all the training/inference/data preparation codes as well as model weights. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
Abstract:In-context learning, which allows large language models to perform diverse tasks with a few demonstrations, is found to have imbalanced per-class prediction accuracy on multi-class text classification. Although notable output correction methods have been developed to tackle the issue and simultaneously improve downstream prediction accuracy, they may fail to answer the core interpretability challenges: why and which certain classes need corrections, and more importantly, a tailored correction for per-sample, per-class's probability. To address such interpretability gaps, we first find that the imbalance arises from certain classes consistently receiving high ICL output probabilities, whereas others receiving lower or mixed ranges, so the former is more frequently chosen, resulting in higher accuracy; more crucially, we find that these ranges have significantly varying degrees of influence on the accuracy bias, highlighting the need for precise, interpretable probability corrections by range. Motivated by this, we propose FuRud, a Fuzzy Rule Optimization based Debiasing method, that (1) detects which classes need corrections, and (2) for each correction-needed class, detects its probability ranges and applies asymmetric amplifications or reductions to correct them interpretably. Notably, across seven benchmark datasets, FuRud reduces the pairwise class accuracy bias (COBias) by more than half (56%), while achieving a relative increase of 21% in accuracy, outperforming state-of-the-art debiasing methods. Moreover, FuRud can optimize downstream tasks with as few as 10 optimization examples. Furthermore, FuRud can work for prompt formats that lead to highly skewed predictions. For example, FuRud greatly improves ICL outputs which use letter options, with 44% relative accuracy increase and 54% relative COBias reduction.
Abstract:Datasets nowadays are generally constructed from multiple sources and using different synthetic techniques, making data de-noising and de-duplication crucial before being used for post-training. In this work, we propose to perform instruction tuning by iterative data selection (\ApproachName{}). We measure the quality of a sample from complexity and diversity simultaneously. Instead of calculating the complexity score once for all before fine-tuning, we highlight the importance of updating this model-specific score during fine-tuning to accurately accommodate the dynamic changes of the model. On the other hand, the diversity score is defined on top of the samples' responses under the consideration of their informativeness. IterIT integrates the strengths of both worlds by iteratively updating the complexity score for the top-ranked samples and greedily selecting the ones with the highest complexity-diversity score. Experiments on multiple instruction-tuning data demonstrate consistent improvements of IterIT over strong baselines. Moreover, our approach also generalizes well to domain-specific scenarios and different backbone models. All resources will be available at https://github.com/JiaQiSJTU/IterIT.