Abstract:In the realm of medical image analysis, self-supervised learning (SSL) techniques have emerged to alleviate labeling demands, while still facing the challenge of training data scarcity owing to escalating resource requirements and privacy constraints. Numerous efforts employ generative models to generate high-fidelity, unlabeled 3D volumes across diverse modalities and anatomical regions. However, the intricate and indistinguishable anatomical structures within the abdomen pose a unique challenge to abdominal CT volume generation compared to other anatomical regions. To address the overlooked challenge, we introduce the Locality-Aware Diffusion (Lad), a novel method tailored for exquisite 3D abdominal CT volume generation. We design a locality loss to refine crucial anatomical regions and devise a condition extractor to integrate abdominal priori into generation, thereby enabling the generation of large quantities of high-quality abdominal CT volumes essential for SSL tasks without the need for additional data such as labels or radiology reports. Volumes generated through our method demonstrate remarkable fidelity in reproducing abdominal structures, achieving a decrease in FID score from 0.0034 to 0.0002 on AbdomenCT-1K dataset, closely mirroring authentic data and surpassing current methods. Extensive experiments demonstrate the effectiveness of our method in self-supervised organ segmentation tasks, resulting in an improvement in mean Dice scores on two abdominal datasets effectively. These results underscore the potential of synthetic data to advance self-supervised learning in medical image analysis.
Abstract:With the development of VR-related techniques, viewers can enjoy a realistic and immersive experience through a head-mounted display, while omnidirectional video with a low frame rate can lead to user dizziness. However, the prevailing plane frame interpolation methodologies are unsuitable for Omnidirectional Video Interpolation, chiefly due to the lack of models tailored to such videos with strong distortion, compounded by the scarcity of valuable datasets for Omnidirectional Video Frame Interpolation. In this paper, we introduce the benchmark dataset, 360VFI, for Omnidirectional Video Frame Interpolation. We present a practical implementation that introduces a distortion prior from omnidirectional video into the network to modulate distortions. We especially propose a pyramid distortion-sensitive feature extractor that uses the unique characteristics of equirectangular projection (ERP) format as prior information. Moreover, we devise a decoder that uses an affine transformation to facilitate the synthesis of intermediate frames further. 360VFI is the first dataset and benchmark that explores the challenge of Omnidirectional Video Frame Interpolation. Through our benchmark analysis, we presented four different distortion conditions scenes in the proposed 360VFI dataset to evaluate the challenge triggered by distortion during interpolation. Besides, experimental results demonstrate that Omnidirectional Video Interpolation can be effectively improved by modeling for omnidirectional distortion.
Abstract:Low-light image enhancement aims to improve an image's visibility while keeping its visual naturalness. Different from existing methods, which tend to accomplish the enhancement task directly, we investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps. Inspired by the color image formulation (diffuse illumination color plus environment illumination color), we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color. To this end, we propose a novel Degradation-to-Refinement Generation Network (DRGN). Its distinctive features can be summarized as 1) A novel two-step generation network for degradation learning and content refinement. It is not only superior to one-step methods, but also is capable of synthesizing sufficient paired samples to benefit the model training; 2) A multi-resolution fusion network to represent the target information (degradation or contents) in a multi-scale cooperative manner, which is more effective to address the complex unmixing problems. Extensive experiments on both the enhancement task and the joint detection task have verified the effectiveness and efficiency of our proposed method, surpassing the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18\% in mAP on ExDark dataset. Our code is available at \url{https://github.com/kuijiang0802/DRGN}