Abstract:This paper presents EasyRAG, a simple, lightweight, and efficient retrieval-augmented generation framework for automated network operations. Our framework has three advantages. The first is accurate question answering. We designed a straightforward RAG scheme based on (1) a specific data processing workflow (2) dual-route sparse retrieval for coarse ranking (3) LLM Reranker for reranking (4) LLM answer generation and optimization. This approach achieved first place in the GLM4 track in the preliminary round and second place in the GLM4 track in the semifinals. The second is simple deployment. Our method primarily consists of BM25 retrieval and BGE-reranker reranking, requiring no fine-tuning of any models, occupying minimal VRAM, easy to deploy, and highly scalable; we provide a flexible code library with various search and generation strategies, facilitating custom process implementation. The last one is efficient inference. We designed an efficient inference acceleration scheme for the entire coarse ranking, reranking, and generation process that significantly reduces the inference latency of RAG while maintaining a good level of accuracy; each acceleration scheme can be plug-and-play into any component of the RAG process, consistently enhancing the efficiency of the RAG system. Our code and data are released at \url{https://github.com/BUAADreamer/EasyRAG}.
Abstract:While next-token prediction is considered a promising path towards artificial general intelligence, it has struggled to excel in multimodal tasks, which are still dominated by diffusion models (e.g., Stable Diffusion) and compositional approaches (e.g., CLIP combined with LLMs). In this paper, we introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token prediction. By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences. Emu3 outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship models such as SDXL and LLaVA-1.6, while eliminating the need for diffusion or compositional architectures. Emu3 is also capable of generating high-fidelity video via predicting the next token in a video sequence. We simplify complex multimodal model designs by converging on a singular focus: tokens, unlocking great potential for scaling both during training and inference. Our results demonstrate that next-token prediction is a promising path towards building general multimodal intelligence beyond language. We open-source key techniques and models to support further research in this direction.
Abstract:The generalization ability of deepfake detectors is vital for their applications in real-world scenarios. One effective solution to enhance this ability is to train the models with manually-blended data, which we termed "blendfake", encouraging models to learn generic forgery artifacts like blending boundary. Interestingly, current SoTA methods utilize blendfake without incorporating any deepfake data in their training process. This is likely because previous empirical observations suggest that vanilla hybrid training (VHT), which combines deepfake and blendfake data, results in inferior performance to methods using only blendfake data (so-called "1+1<2"). Therefore, a critical question arises: Can we leave deepfake behind and rely solely on blendfake data to train an effective deepfake detector? Intuitively, as deepfakes also contain additional informative forgery clues (e.g., deep generative artifacts), excluding all deepfake data in training deepfake detectors seems counter-intuitive. In this paper, we rethink the role of blendfake in detecting deepfakes and formulate the process from "real to blendfake to deepfake" to be a progressive transition. Specifically, blendfake and deepfake can be explicitly delineated as the oriented pivot anchors between "real-to-fake" transitions. The accumulation of forgery information should be oriented and progressively increasing during this transition process. To this end, we propose an Oriented Progressive Regularizor (OPR) to establish the constraints that compel the distribution of anchors to be discretely arranged. Furthermore, we introduce feature bridging to facilitate the smooth transition between adjacent anchors. Extensive experiments confirm that our design allows leveraging forgery information from both blendfake and deepfake effectively and comprehensively.
Abstract:Recent Text-to-SQL methods leverage large language models (LLMs) by incorporating feedback from the database management system. While these methods effectively address execution errors in SQL queries, they struggle with database mismatches -- errors that do not trigger execution exceptions. Database mismatches include issues such as condition mismatches and stricter constraint mismatches, both of which are more prevalent in real-world scenarios. To address these challenges, we propose a tool-assisted agent framework for SQL inspection and refinement, equipping the LLM-based agent with two specialized tools: a retriever and a detector, designed to diagnose and correct SQL queries with database mismatches. These tools enhance the capability of LLMs to handle real-world queries more effectively. We also introduce Spider-Mismatch, a new dataset specifically constructed to reflect the condition mismatch problems encountered in real-world scenarios. Experimental results demonstrate that our method achieves the highest performance on the averaged results of the Spider and Spider-Realistic datasets in few-shot settings, and it significantly outperforms baseline methods on the more realistic dataset, Spider-Mismatch.
Abstract:Learning intrinsic bias from limited data has been considered the main reason for the failure of deepfake detection with generalizability. Apart from the discovered content and specific-forgery bias, we reveal a novel spatial bias, where detectors inertly anticipate observing structural forgery clues appearing at the image center, also can lead to the poor generalization of existing methods. We present ED$^4$, a simple and effective strategy, to address aforementioned biases explicitly at the data level in a unified framework rather than implicit disentanglement via network design. In particular, we develop ClockMix to produce facial structure preserved mixtures with arbitrary samples, which allows the detector to learn from an exponentially extended data distribution with much more diverse identities, backgrounds, local manipulation traces, and the co-occurrence of multiple forgery artifacts. We further propose the Adversarial Spatial Consistency Module (AdvSCM) to prevent extracting features with spatial bias, which adversarially generates spatial-inconsistent images and constrains their extracted feature to be consistent. As a model-agnostic debiasing strategy, ED$^4$ is plug-and-play: it can be integrated with various deepfake detectors to obtain significant benefits. We conduct extensive experiments to demonstrate its effectiveness and superiority over existing deepfake detection approaches.
Abstract:Recent years have seen an increasing interest in physical adversarial attacks, which aim to craft deployable patterns for deceiving deep neural networks, especially for person detectors. However, the adversarial patterns of existing patch-based attacks heavily suffer from the self-coupling issue, where a degradation, caused by physical transformations, in any small patch segment can result in a complete adversarial dysfunction, leading to poor robustness in the complex real world. Upon this observation, we introduce the Decoupled adversarial Patch (DePatch) attack to address the self-coupling issue of adversarial patches. Specifically, we divide the adversarial patch into block-wise segments, and reduce the inter-dependency among these segments through randomly erasing out some segments during the optimization. We further introduce a border shifting operation and a progressive decoupling strategy to improve the overall attack capabilities. Extensive experiments demonstrate the superior performance of our method over other physical adversarial attacks, especially in the real world.
Abstract:The face swapping technique based on deepfake methods poses significant social risks to personal identity security. While numerous deepfake detection methods have been proposed as countermeasures against malicious face swapping, they can only output binary labels (Fake/Real) for distinguishing fake content without reliable and traceable evidence. To achieve visual forensics and target face attribution, we propose a novel task named face retracing, which considers retracing the original target face from the given fake one via inverse mapping. Toward this goal, we propose an IDRetracor that can retrace arbitrary original target identities from fake faces generated by multiple face swapping methods. Specifically, we first adopt a mapping resolver to perceive the possible solution space of the original target face for the inverse mappings. Then, we propose mapping-aware convolutions to retrace the original target face from the fake one. Such convolutions contain multiple kernels that can be combined under the control of the mapping resolver to tackle different face swapping mappings dynamically. Extensive experiments demonstrate that the IDRetracor exhibits promising retracing performance from both quantitative and qualitative perspectives.
Abstract:Large Language Models (LLMs) represent a significant stride toward Artificial General Intelligence. As scaling laws underscore the potential of increasing model sizes, the academic community has intensified its investigations into LLMs with capacities exceeding 50 billion parameters. This technical report builds on our prior work with Tele-FLM (also known as FLM-2), a publicly available 52-billion-parameter model. We delve into two primary areas: we first discuss our observation of Supervised Fine-tuning (SFT) on Tele-FLM-52B, which supports the "less is more" approach for SFT data construction; second, we demonstrate our experiments and analyses on the best practices for progressively growing a model from 52 billion to 102 billion, and subsequently to 1 trillion parameters. We will open-source a 1T model checkpoint, namely Tele-FLM-1T, to advance further training and research.
Abstract:There are substantial instructional videos on the Internet, which provide us tutorials for completing various tasks. Existing instructional video datasets only focus on specific steps at the video level, lacking experiential guidelines at the task level, which can lead to beginners struggling to learn new tasks due to the lack of relevant experience. Moreover, the specific steps without guidelines are trivial and unsystematic, making it difficult to provide a clear tutorial. To address these problems, we present the GUIDE (Guideline-Guided) dataset, which contains 3.5K videos of 560 instructional tasks in 8 domains related to our daily life. Specifically, we annotate each instructional task with a guideline, representing a common pattern shared by all task-related videos. On this basis, we annotate systematic specific steps, including their associated guideline steps, specific step descriptions and timestamps. Our proposed benchmark consists of three sub-tasks to evaluate comprehension ability of models: (1) Step Captioning: models have to generate captions for specific steps from videos. (2) Guideline Summarization: models have to mine the common pattern in task-related videos and summarize a guideline from them. (3) Guideline-Guided Captioning: models have to generate captions for specific steps under the guide of guideline. We evaluate plenty of foundation models with GUIDE and perform in-depth analysis. Given the diversity and practicality of GUIDE, we believe that it can be used as a better benchmark for instructional video comprehension.
Abstract:Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a \textit{lexical unit}, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model