Abstract:We propose PixelGaussian, an efficient feed-forward framework for learning generalizable 3D Gaussian reconstruction from arbitrary views. Most existing methods rely on uniform pixel-wise Gaussian representations, which learn a fixed number of 3D Gaussians for each view and cannot generalize well to more input views. Differently, our PixelGaussian dynamically adapts both the Gaussian distribution and quantity based on geometric complexity, leading to more efficient representations and significant improvements in reconstruction quality. Specifically, we introduce a Cascade Gaussian Adapter to adjust Gaussian distribution according to local geometry complexity identified by a keypoint scorer. CGA leverages deformable attention in context-aware hypernetworks to guide Gaussian pruning and splitting, ensuring accurate representation in complex regions while reducing redundancy. Furthermore, we design a transformer-based Iterative Gaussian Refiner module that refines Gaussian representations through direct image-Gaussian interactions. Our PixelGaussian can effectively reduce Gaussian redundancy as input views increase. We conduct extensive experiments on the large-scale ACID and RealEstate10K datasets, where our method achieves state-of-the-art performance with good generalization to various numbers of views. Code: https://github.com/Barrybarry-Smith/PixelGaussian.
Abstract:Vision mambas have demonstrated strong performance with linear complexity to the number of vision tokens. Their efficiency results from processing image tokens sequentially. However, most existing methods employ patch-based image tokenization and then flatten them into 1D sequences for causal processing, which ignore the intrinsic 2D structural correlations of images. It is also difficult to extract global information by sequential processing of local patches. In this paper, we propose a global image serialization method to transform the image into a sequence of causal tokens, which contain global information of the 2D image. We first convert the image from the spatial domain to the frequency domain using Discrete Cosine Transform (DCT) and then arrange the pixels with corresponding frequency ranges. We further transform each set within the same frequency band back to the spatial domain to obtain a series of images before tokenization. We construct a vision mamba model, GlobalMamba, with a causal input format based on the proposed global image serialization, which can better exploit the causal relations among image sequences. Extensive experiments demonstrate the effectiveness of our GlobalMamba, including image classification on ImageNet-1K, object detection on COCO, and semantic segmentation on ADE20K.
Abstract:Mamba has garnered widespread attention due to its flexible design and efficient hardware performance to process 1D sequences based on the state space model (SSM). Recent studies have attempted to apply Mamba to the visual domain by flattening 2D images into patches and then regarding them as a 1D sequence. To compensate for the 2D structure information loss (e.g., local similarity) of the original image, most existing methods focus on designing different orders to sequentially process the tokens, which could only alleviate this issue to some extent. In this paper, we propose a Visual 2-Dimensional Mamba (V2M) model as a complete solution, which directly processes image tokens in the 2D space. We first generalize SSM to the 2-dimensional space which generates the next state considering two adjacent states on both dimensions (e.g., columns and rows). We then construct our V2M based on the 2-dimensional SSM formulation and incorporate Mamba to achieve hardware-efficient parallel processing. The proposed V2M effectively incorporates the 2D locality prior yet inherits the efficiency and input-dependent scalability of Mamba. Extensive experimental results on ImageNet classification and downstream visual tasks including object detection and instance segmentation on COCO and semantic segmentation on ADE20K demonstrate the effectiveness of our V2M compared with other visual backbones.
Abstract:In this paper, we propose a new framework for zero-shot object navigation. Existing zero-shot object navigation methods prompt LLM with the text of spatially closed objects, which lacks enough scene context for in-depth reasoning. To better preserve the information of environment and fully exploit the reasoning ability of LLM, we propose to represent the observed scene with 3D scene graph. The scene graph encodes the relationships between objects, groups and rooms with a LLM-friendly structure, for which we design a hierarchical chain-of-thought prompt to help LLM reason the goal location according to scene context by traversing the nodes and edges. Moreover, benefit from the scene graph representation, we further design a re-perception mechanism to empower the object navigation framework with the ability to correct perception error. We conduct extensive experiments on MP3D, HM3D and RoboTHOR environments, where SG-Nav surpasses previous state-of-the-art zero-shot methods by more than 10% SR on all benchmarks, while the decision process is explainable. To the best of our knowledge, SG-Nav is the first zero-shot method that achieves even higher performance than supervised object navigation methods on the challenging MP3D benchmark.
Abstract:In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.
Abstract:In this paper, we propose a One-Point-One NeRF (OPONeRF) framework for robust scene rendering. Existing NeRFs are designed based on a key assumption that the target scene remains unchanged between the training and test time. However, small but unpredictable perturbations such as object movements, light changes and data contaminations broadly exist in real-life 3D scenes, which lead to significantly defective or failed rendering results even for the recent state-of-the-art generalizable methods. To address this, we propose a divide-and-conquer framework in OPONeRF that adaptively responds to local scene variations via personalizing appropriate point-wise parameters, instead of fitting a single set of NeRF parameters that are inactive to test-time unseen changes. Moreover, to explicitly capture the local uncertainty, we decompose the point representation into deterministic mapping and probabilistic inference. In this way, OPONeRF learns the sharable invariance and unsupervisedly models the unexpected scene variations between the training and testing scenes. To validate the effectiveness of the proposed method, we construct benchmarks from both realistic and synthetic data with diverse test-time perturbations including foreground motions, illumination variations and multi-modality noises, which are more challenging than conventional generalization and temporal reconstruction benchmarks. Experimental results show that our OPONeRF outperforms state-of-the-art NeRFs on various evaluation metrics through benchmark experiments and cross-scene evaluations. We further show the efficacy of the proposed method via experimenting on other existing generalization-based benchmarks and incorporating the idea of One-Point-One NeRF into other advanced baseline methods.
Abstract:Building on the success of diffusion models in visual generation, flow-based models reemerge as another prominent family of generative models that have achieved competitive or better performance in terms of both visual quality and inference speed. By learning the velocity field through flow-matching, flow-based models tend to produce a straighter sampling trajectory, which is advantageous during the sampling process. However, unlike diffusion models for which fast samplers are well-developed, efficient sampling of flow-based generative models has been rarely explored. In this paper, we propose a framework called FlowTurbo to accelerate the sampling of flow-based models while still enhancing the sampling quality. Our primary observation is that the velocity predictor's outputs in the flow-based models will become stable during the sampling, enabling the estimation of velocity via a lightweight velocity refiner. Additionally, we introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time. Since FlowTurbo does not change the multi-step sampling paradigm, it can be effectively applied for various tasks such as image editing, inpainting, etc. By integrating FlowTurbo into different flow-based models, we obtain an acceleration ratio of 53.1%$\sim$58.3% on class-conditional generation and 29.8%$\sim$38.5% on text-to-image generation. Notably, FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img), achieving the real-time image generation and establishing the new state-of-the-art. Code is available at https://github.com/shiml20/FlowTurbo.
Abstract:Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024$\times$1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
Abstract:Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration, so an online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed. Since high-quality 3D data is limited, directly training such a model in 3D is almost infeasible. Meanwhile, vision foundation models (VFM) has revolutionized the field of 2D computer vision with superior performance, which makes the use of VFM to assist embodied 3D perception a promising direction. However, most existing VFM-assisted 3D perception methods are either offline or too slow that cannot be applied in practical embodied tasks. In this paper, we aim to leverage Segment Anything Model (SAM) for real-time 3D instance segmentation in an online setting. This is a challenging problem since future frames are not available in the input streaming RGB-D video, and an instance may be observed in several frames so object matching between frames is required. To address these challenges, we first propose a geometric-aware query lifting module to represent the 2D masks generated by SAM by 3D-aware queries, which is then iteratively refined by a dual-level query decoder. In this way, the 2D masks are transferred to fine-grained shapes on 3D point clouds. Benefit from the query representation for 3D masks, we can compute the similarity matrix between the 3D masks from different views by efficient matrix operation, which enables real-time inference. Experiments on ScanNet, ScanNet200, SceneNN and 3RScan show our method achieves leading performance even compared with offline methods. Our method also demonstrates great generalization ability in several zero-shot dataset transferring experiments and show great potential in open-vocabulary and data-efficient setting. Code and demo are available at https://xuxw98.github.io/ESAM/, with only one RTX 3090 GPU required for training and evaluation.
Abstract:The Diffusion models, widely used for image generation, face significant challenges related to their broad applicability due to prolonged inference times and high memory demands. Efficient Post-Training Quantization (PTQ) is crucial to address these issues in traditional models. Unlike those models, diffusion models critically rely on the time-step $t$ for effective multi-round denoising. Typically, $t$ from the finite set $\{1, \ldots, T\}$ is encoded into a hypersensitive temporal feature by several modules, entirely independent of the sampling data. However, existing PTQ methods do not optimize these modules individually. Instead, they employ unsuitable reconstruction objectives and complex calibration methods, leading to significant disturbances in the temporal feature and denoising trajectory. To address these challenges, we introduce a novel quantization framework: 1)~TIB-based Maintenance: Based on our innovative Temporal Information Block~(TIB) definition, Temporal Information-aware Reconstruction~(TIAR) and Finite Set Calibration~(FSC) are developed to efficiently align full precision temporal features. 2)~Cache-based Maintenance: Instead of indirect and complex optimization for the related modules, pre-computing and caching quantized counterparts of temporal features are developed to minimize errors. 3)~Disturbance-aware Selection: Employ temporal feature errors to guide a fine-grained selection for superior maintenance. This framework preserves most of the temporal information and ensures high-quality end-to-end generation. Extensive testing on various datasets and diffusion models confirms our superior results. Notably, our approach closely matches the performance of the full-precision model under 4-bit quantization. Furthermore, the quantized SD-XL model achieves hardware acceleration of 2.20$\times$ on CPU and 5.76$\times$ on GPU demonstrating its efficiency.