Abstract:Multi-task robotic bimanual manipulation is becoming increasingly popular as it enables sophisticated tasks that require diverse dual-arm collaboration patterns. Compared to unimanual manipulation, bimanual tasks pose challenges to understanding the multi-body spatiotemporal dynamics. An existing method ManiGaussian pioneers encoding the spatiotemporal dynamics into the visual representation via Gaussian world model for single-arm settings, which ignores the interaction of multiple embodiments for dual-arm systems with significant performance drop. In this paper, we propose ManiGaussian++, an extension of ManiGaussian framework that improves multi-task bimanual manipulation by digesting multi-body scene dynamics through a hierarchical Gaussian world model. To be specific, we first generate task-oriented Gaussian Splatting from intermediate visual features, which aims to differentiate acting and stabilizing arms for multi-body spatiotemporal dynamics modeling. We then build a hierarchical Gaussian world model with the leader-follower architecture, where the multi-body spatiotemporal dynamics is mined for intermediate visual representation via future scene prediction. The leader predicts Gaussian Splatting deformation caused by motions of the stabilizing arm, through which the follower generates the physical consequences resulted from the movement of the acting arm. As a result, our method significantly outperforms the current state-of-the-art bimanual manipulation techniques by an improvement of 20.2% in 10 simulated tasks, and achieves 60% success rate on average in 9 challenging real-world tasks. Our code is available at https://github.com/April-Yz/ManiGaussian_Bimanual.
Abstract:3D occupancy prediction is crucial for robust autonomous driving systems as it enables comprehensive perception of environmental structures and semantics. Most existing methods employ dense voxel-based scene representations, ignoring the sparsity of driving scenes and resulting in inefficiency. Recent works explore object-centric representations based on sparse Gaussians, but their ellipsoidal shape prior limits the modeling of diverse structures. In real-world driving scenes, objects exhibit rich geometries (e.g., cuboids, cylinders, and irregular shapes), necessitating excessive ellipsoidal Gaussians densely packed for accurate modeling, which leads to inefficient representations. To address this, we propose to use geometrically expressive superquadrics as scene primitives, enabling efficient representation of complex structures with fewer primitives through their inherent shape diversity. We develop a probabilistic superquadric mixture model, which interprets each superquadric as an occupancy probability distribution with a corresponding geometry prior, and calculates semantics through probabilistic mixture. Building on this, we present QuadricFormer, a superquadric-based model for efficient 3D occupancy prediction, and introduce a pruning-and-splitting module to further enhance modeling efficiency by concentrating superquadrics in occupied regions. Extensive experiments on the nuScenes dataset demonstrate that QuadricFormer achieves state-of-the-art performance while maintaining superior efficiency.
Abstract:Autoregressive visual generation has garnered increasing attention due to its scalability and compatibility with other modalities compared with diffusion models. Most existing methods construct visual sequences as spatial patches for autoregressive generation. However, image patches are inherently parallel, contradicting the causal nature of autoregressive modeling. To address this, we propose a Spectral AutoRegressive (SpectralAR) visual generation framework, which realizes causality for visual sequences from the spectral perspective. Specifically, we first transform an image into ordered spectral tokens with Nested Spectral Tokenization, representing lower to higher frequency components. We then perform autoregressive generation in a coarse-to-fine manner with the sequences of spectral tokens. By considering different levels of detail in images, our SpectralAR achieves both sequence causality and token efficiency without bells and whistles. We conduct extensive experiments on ImageNet-1K for image reconstruction and autoregressive generation, and SpectralAR achieves 3.02 gFID with only 64 tokens and 310M parameters. Project page: https://huang-yh.github.io/spectralar/.
Abstract:The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
Abstract:The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
Abstract:Recently, we have witnessed the great success of the generalist model in natural language processing. The generalist model is a general framework trained with massive data and is able to process various downstream tasks simultaneously. Encouraged by their impressive performance, an increasing number of researchers are venturing into the realm of applying these models to computer vision tasks. However, the inputs and outputs of vision tasks are more diverse, and it is difficult to summarize them as a unified representation. In this paper, we provide a comprehensive overview of the vision generalist models, delving into their characteristics and capabilities within the field. First, we review the background, including the datasets, tasks, and benchmarks. Then, we dig into the design of frameworks that have been proposed in existing research, while also introducing the techniques employed to enhance their performance. To better help the researchers comprehend the area, we take a brief excursion into related domains, shedding light on their interconnections and potential synergies. To conclude, we provide some real-world application scenarios, undertake a thorough examination of the persistent challenges, and offer insights into possible directions for future research endeavors.
Abstract:Embodied AI systems, comprising AI models and physical plants, are increasingly prevalent across various applications. Due to the rarity of system failures, ensuring their safety in complex operating environments remains a major challenge, which severely hinders their large-scale deployment in safety-critical domains, such as autonomous vehicles, medical devices, and robotics. While achieving provable deterministic safety--verifying system safety across all possible scenarios--remains theoretically ideal, the rarity and complexity of corner cases make this approach impractical for scalable embodied AI systems. To address this challenge, we introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold. Instead of attempting exhaustive safety proof across all corner cases, this paradigm establishes a probabilistic safety boundary on overall system performance, leveraging statistical methods to enhance feasibility and scalability. A well-defined probabilistic safety boundary enables embodied AI systems to be deployed at scale while allowing for continuous refinement of safety guarantees. Our work focuses on three core questions: what is provable probabilistic safety, how to prove the probabilistic safety, and how to achieve the provable probabilistic safety. By bridging the gap between theoretical safety assurance and practical deployment, our work offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
Abstract:Reconstructing semantic-aware 3D scenes from sparse views is a challenging yet essential research direction, driven by the demands of emerging applications such as virtual reality and embodied AI. Existing per-scene optimization methods require dense input views and incur high computational costs, while generalizable approaches often struggle to reconstruct regions outside the input view cone. In this paper, we propose OGGSplat, an open Gaussian growing method that expands the field-of-view in generalizable 3D reconstruction. Our key insight is that the semantic attributes of open Gaussians provide strong priors for image extrapolation, enabling both semantic consistency and visual plausibility. Specifically, once open Gaussians are initialized from sparse views, we introduce an RGB-semantic consistent inpainting module applied to selected rendered views. This module enforces bidirectional control between an image diffusion model and a semantic diffusion model. The inpainted regions are then lifted back into 3D space for efficient and progressive Gaussian parameter optimization. To evaluate our method, we establish a Gaussian Outpainting (GO) benchmark that assesses both semantic and generative quality of reconstructed open-vocabulary scenes. OGGSplat also demonstrates promising semantic-aware scene reconstruction capabilities when provided with two view images captured directly from a smartphone camera.
Abstract:Multimodal Large Language Models (MLLMs) are commonly derived by extending pre-trained Large Language Models (LLMs) with visual capabilities. In this work, we investigate how MLLMs process visual inputs by analyzing their attention mechanisms. We reveal a surprising sparsity phenomenon: only a small subset (approximately less than 5%) of attention heads in LLMs actively contribute to visual understanding, termed visual heads. To identify these heads efficiently, we design a training-free framework that quantifies head-level visual relevance through targeted response analysis. Building on this discovery, we introduce SparseMM, a KV-Cache optimization strategy that allocates asymmetric computation budgets to heads in LLMs based on their visual scores, leveraging the sparity of visual heads for accelerating the inference of MLLMs. Compared with prior KV-Cache acceleration methods that ignore the particularity of visual, SparseMM prioritizes stress and retaining visual semantics during decoding. Extensive evaluations across mainstream multimodal benchmarks demonstrate that SparseMM achieves superior accuracy-efficiency trade-offs. Notably, SparseMM delivers 1.38x real-time acceleration and 52% memory reduction during generation while maintaining performance parity on efficiency test. Our project is open sourced at https://github.com/CR400AF-A/SparseMM.
Abstract:Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.