Abstract:Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.
Abstract:Attention-based architectures have become ubiquitous in time series forecasting tasks, including spatio-temporal (STF) and long-term time series forecasting (LTSF). Yet, our understanding of the reasons for their effectiveness remains limited. This work proposes a new way to understand self-attention networks: we have shown empirically that the entire attention mechanism in the encoder can be reduced to an MLP formed by feedforward, skip-connection, and layer normalization operations for temporal and/or spatial modeling in multivariate time series forecasting. Specifically, the Q, K, and V projection, the attention score calculation, the dot-product between the attention score and the V, and the final projection can be removed from the attention-based networks without significantly degrading the performance that the given network remains the top-tier compared to other SOTA methods. For spatio-temporal networks, the MLP-replace-attention network achieves a reduction in FLOPS of $62.579\%$ with a loss in performance less than $2.5\%$; for LTSF, a reduction in FLOPs of $42.233\%$ with a loss in performance less than $2\%$.
Abstract:Stereo matching for inland waterways is one of the key technologies for the autonomous navigation of Unmanned Surface Vehicles (USVs), which involves dividing the stereo images into reference images and target images for pixel-level matching. However, due to the challenges of the inland waterway environment, such as blurred textures, large spatial scales, and computational resource constraints of the USVs platform, the participation of geometric features from the target image is required for efficient target-driven matching. Based on this target-driven concept, we propose a lightweight target-driven stereo matching neural network, named LTNet. Specifically, a lightweight and efficient 4D cost volume, named the Geometry Target Volume (GTV), is designed to fully utilize the geometric information of target features by employing the shifted target features as the filtered feature volume. Subsequently, to address the substantial texture interference and object occlusions present in the waterway environment, a Left-Right Consistency Refinement (LRR) module is proposed. The \text{LRR} utilizes the pixel-level differences in left and right disparities to introduce soft constraints, thereby enhancing the accuracy of predictions during the intermediate stages of the network. Moreover, knowledge distillation is utilized to enhance the generalization capability of lightweight models on the USVInland dataset. Furthermore, a new large-scale benchmark, named Spring, is utilized to validate the applicability of LTNet across various scenarios. In experiments on the aforementioned two datasets, LTNet achieves competitive results, with only 3.7M parameters. The code is available at https://github.com/Open-YiQingZhou/LTNet .
Abstract:In this work, we introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory. Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images. This limits these methods to a low-resolution representation and makes it difficult to scale up to the dense views for better quality. GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms to effectively integrate image features into 3D representations. We implement this solution through a two-stage pipeline: initially, a lightweight proposal network generates a sparse set of 3D anchor points from the posed image inputs; subsequently, a specialized reconstruction transformer refines the geometry and retrieves textural details. Extensive experimental results demonstrate that GeoLRM significantly outperforms existing models, especially for dense view inputs. We also demonstrate the practical applicability of our model with 3D generation tasks, showcasing its versatility and potential for broader adoption in real-world applications.
Abstract:As a fundamental task of vision-based perception, 3D occupancy prediction reconstructs 3D structures of surrounding environments. It provides detailed information for autonomous driving planning and navigation. However, most existing methods heavily rely on the LiDAR point clouds to generate occupancy ground truth, which is not available in the vision-based system. In this paper, we propose an OccNeRF method for self-supervised multi-camera occupancy prediction. Different from bounded 3D occupancy labels, we need to consider unbounded scenes with raw image supervision. To solve the issue, we parameterize the reconstructed occupancy fields and reorganize the sampling strategy. The neural rendering is adopted to convert occupancy fields to multi-camera depth maps, supervised by multi-frame photometric consistency. Moreover, for semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model. Extensive experiments for both self-supervised depth estimation and semantic occupancy prediction tasks on nuScenes dataset demonstrate the effectiveness of our method.
Abstract:For lower limb amputees, an active ankle joint prosthesis can provide basic mobility functions. This study focuses on an ankle joint prosthesis system based on the principle of electric-hydraulic actuation. By analyzing the characteristics of human gait cycles and the mechanics of ankle joint movement, a lightweight and integrated ankle joint prosthesis is designed, considering the requirements for normal ankle joint kinematics and dynamics. The components of the prosthesis are optimized through simulation and iterative improvements, while ensuring tight integration within minimal space. The design and simulation verification of the integrated lightweight prosthesis components are achieved. This research addresses the contradiction between the high output capability and the constraints on volume and weight in prosthetic devices.
Abstract:Recently, 3D content creation from text prompts has demonstrated remarkable progress by utilizing 2D and 3D diffusion models. While 3D diffusion models ensure great multi-view consistency, their ability to generate high-quality and diverse 3D assets is hindered by the limited 3D data. In contrast, 2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data. However, 2D lifting methods suffer from inherent view-agnostic ambiguity thereby leading to serious multi-face Janus issues, where text prompts fail to provide sufficient guidance to learn coherent 3D results. Instead of retraining a costly viewpoint-aware model, we study how to fully exploit easily accessible coarse 3D knowledge to enhance the prompts and guide 2D lifting optimization for refinement. In this paper, we propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously. Specifically, we design a pair of guiding strategies derived from the coarse 3D prior generated by the 3D diffusion model: a structural guidance for geometric fidelity and a semantic guidance for 3D coherence. Employing the two types of guidance, the 2D diffusion model enriches the 3D content with diversified and high-quality results. Extensive experiments show the superiority of our Sherpa3D over the state-of-the-art text-to-3D methods in terms of quality and 3D consistency.
Abstract:It is commonly recognized that the expressiveness of deep neural networks is contingent upon a range of factors, encompassing their depth, width, and other relevant considerations. Currently, the practical performance of the majority of deep neural networks remains uncertain. For ReLU (Rectified Linear Unit) networks with piecewise linear activations, the number of linear convex regions serves as a natural metric to gauge the network's expressivity. In this paper, we count the number of linear convex regions in deep neural networks based on ReLU. In particular, we prove that for any one-dimensional input, there exists a minimum threshold for the number of neurons required to express it. We also empirically observe that for the same network, intricate inputs hinder its capacity to express linear regions. Furthermore, we unveil the iterative refinement process of decision boundaries in ReLU networks during training. We aspire for our research to serve as an inspiration for network optimization endeavors and aids in the exploration and analysis of the behaviors exhibited by deep networks.
Abstract:Multivariate long-term time series forecasting is of great application across many domains, such as energy consumption and weather forecasting. With the development of transformer-based methods, the performance of multivariate long-term time series forecasting has been significantly improved, however, the study of spatial features extracting in transformer-based model is rare and the consistency of different prediction periods is unsatisfactory due to the large span. In this work, we propose a complete solution to address these problems in terms of feature extraction and target prediction. For extraction, we design an efficient spatio-temporal encoding extractor including a semi-adaptive graph to acquire sufficient spatio-temporal information. For prediction, we propose a Cascaded Decoding Predictor (CDP) to strengthen the correlation between different intervals, which can also be utilized as a generic component to improve the performance of transformer-based methods. The proposed method, termed as Spatio-temporal Encoding Cascaded Transformer (Stecformer), achieving a notable gap over the baseline model and is comparable with the state-of-the-art performance of transformer-based methods on five benchmark datasets. We hope our attempt will serve as a regular configuration in multivariate long-term time series forecasting in the future.
Abstract:3D scene understanding plays a vital role in vision-based autonomous driving. While most existing methods focus on 3D object detection, they have difficulty describing real-world objects of arbitrary shapes and infinite classes. Towards a more comprehensive perception of a 3D scene, in this paper, we propose a SurroundOcc method to predict the 3D occupancy with multi-camera images. We first extract multi-scale features for each image and adopt spatial 2D-3D attention to lift them to the 3D volume space. Then we apply 3D convolutions to progressively upsample the volume features and impose supervision on multiple levels. To obtain dense occupancy prediction, we design a pipeline to generate dense occupancy ground truth without expansive occupancy annotations. Specifically, we fuse multi-frame LiDAR scans of dynamic objects and static scenes separately. Then we adopt Poisson Reconstruction to fill the holes and voxelize the mesh to get dense occupancy labels. Extensive experiments on nuScenes and SemanticKITTI datasets demonstrate the superiority of our method. Code and dataset are available at https://github.com/weiyithu/SurroundOcc