Abstract:Multivariate long-term time series forecasting is of great application across many domains, such as energy consumption and weather forecasting. With the development of transformer-based methods, the performance of multivariate long-term time series forecasting has been significantly improved, however, the study of spatial features extracting in transformer-based model is rare and the consistency of different prediction periods is unsatisfactory due to the large span. In this work, we propose a complete solution to address these problems in terms of feature extraction and target prediction. For extraction, we design an efficient spatio-temporal encoding extractor including a semi-adaptive graph to acquire sufficient spatio-temporal information. For prediction, we propose a Cascaded Decoding Predictor (CDP) to strengthen the correlation between different intervals, which can also be utilized as a generic component to improve the performance of transformer-based methods. The proposed method, termed as Spatio-temporal Encoding Cascaded Transformer (Stecformer), achieving a notable gap over the baseline model and is comparable with the state-of-the-art performance of transformer-based methods on five benchmark datasets. We hope our attempt will serve as a regular configuration in multivariate long-term time series forecasting in the future.
Abstract:Recently Transformer has shown good performance in several vision tasks due to its powerful modeling capabilities. To reduce the quadratic complexity caused by the attention, some outstanding work restricts attention to local regions or extends axial interactions. However, these methos often lack the interaction of local and global information, balancing coarse and fine-grained information. To address this problem, we propose AxWin Attention, which models context information in both local windows and axial views. Based on the AxWin Attention, we develop a context-aware vision transformer backbone, named AxWin Transformer, which outperforming the state-of-the-art methods in both classification and downstream segmentation and detection tasks.
Abstract:The lightweight MLP-based decoder has become increasingly promising for semantic segmentation. However, the channel-wise MLP cannot expand the receptive fields, lacking the context modeling capacity, which is critical to semantic segmentation. In this paper, we propose a parametric-free patch rotate operation to reorganize the pixels spatially. It first divides the feature map into multiple groups and then rotates the patches within each group. Based on the proposed patch rotate operation, we design a novel segmentation network, named PRSeg, which includes an off-the-shelf backbone and a lightweight Patch Rotate MLP decoder containing multiple Dynamic Patch Rotate Blocks (DPR-Blocks). In each DPR-Block, the fully connected layer is performed following a Patch Rotate Module (PRM) to exchange spatial information between pixels. Specifically, in PRM, the feature map is first split into the reserved part and rotated part along the channel dimension according to the predicted probability of the Dynamic Channel Selection Module (DCSM), and our proposed patch rotate operation is only performed on the rotated part. Extensive experiments on ADE20K, Cityscapes and COCO-Stuff 10K datasets prove the effectiveness of our approach. We expect that our PRSeg can promote the development of MLP-based decoder in semantic segmentation.
Abstract:Medical image classification has developed rapidly under the impetus of the convolutional neural network (CNN). Due to the fixed size of the receptive field of the convolution kernel, it is difficult to capture the global features of medical images. Although the self-attention-based Transformer can model long-range dependencies, it has high computational complexity and lacks local inductive bias. Much research has demonstrated that global and local features are crucial for image classification. However, medical images have a lot of noisy, scattered features, intra-class variation, and inter-class similarities. This paper proposes a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse for medical image classification as a new method. It can fuse the advantages of Transformer and CNN from multi-scale hierarchies without destroying the respective modeling so as to improve the classification accuracy of various medical images. A parallel hierarchy of local and global feature blocks is designed to efficiently extract local features and global representations at various semantic scales, with the flexibility to model at different scales and linear computational complexity relevant to image size. Moreover, an adaptive hierarchical feature fusion block (HFF block) is designed to utilize the features obtained at different hierarchical levels comprehensively. The HFF block contains spatial attention, channel attention, residual inverted MLP, and shortcut to adaptively fuse semantic information between various scale features of each branch. The accuracy of our proposed model on the ISIC2018 dataset is 7.6% higher than baseline, 21.5% on the Covid-19 dataset, and 10.4% on the Kvasir dataset. Compared with other advanced models, the HiFuse model performs the best. Our code is open-source and available from https://github.com/huoxiangzuo/HiFuse.
Abstract:Translation-based knowledge graph embedding has been one of the most important branches for knowledge representation learning since TransE came out. Although many translation-based approaches have achieved some progress in recent years, the performance was still unsatisfactory. This paper proposes a novel knowledge graph embedding method named TripleRE with two versions. The first version of TripleRE creatively divide the relationship vector into three parts. The second version takes advantage of the concept of residual and achieves better performance. In addition, attempts on using NodePiece to encode entities achieved promising results in reducing the parametric size, and solved the problems of scalability. Experiments show that our approach achieved state-of-the-art performance on the large-scale knowledge graph dataset, and competitive performance on other datasets.
Abstract:A general three-dimensional (3D) non-stationary massive multiple-input multiple-output (MIMO) geometry-based stochastic model (GBSM) for the sixth generation (6G) communication systems is proposed in the paper. The novelty of the model is that the model is designed to cover a variety of channel characteristics, including space-time-frequency (STF) non-stationarity, spherical wavefront, spatial consistency, channel hardening, etc. Firstly, the introduction of the twin-cluster channel model is given in detail. Secondly, the key statistical properties such as space-time-frequency correlation function (STFCF), space cross-correlation function (CCF), temporal autocorrelation function (ACF), frequency correlation function (FCF), and performance indicators, e.g., singular value spread (SVS), and channel capacity are derived. Finally, the simulation results are given and consistent with some measurements in relevant literatures, which validate that the proposed channel model has a certain value as a reference to model massive MIMO channel characteristics.
Abstract:Since medical image data sets contain few samples and singular features, lesions are viewed as highly similar to other tissues. The traditional neural network has a limited ability to learn features. Even if a host of feature maps is expanded to obtain more semantic information, the accuracy of segmenting the final medical image is slightly improved, and the features are excessively redundant. To solve the above problems, in this paper, we propose a novel end-to-end semantic segmentation algorithm, DT-Net, and use two new convolution strategies to better achieve end-to-end semantic segmentation of medical images. 1. In the feature mining and feature fusion stage, we construct a multi-directional integrated convolution (MDIC). The core idea is to use the multi-scale convolution to enhance the local multi-directional feature maps to generate enhanced feature maps and to mine the generated features that contain more semantics without increasing the number of feature maps. 2. We also aim to further excavate and retain more meaningful deep features reduce a host of noise features in the training process. Therefore, we propose a convolution thresholding strategy. The central idea is to set a threshold to eliminate a large number of redundant features and reduce computational complexity. Through the two strategies proposed above, the algorithm proposed in this paper produces state-of-the-art results on two public medical image datasets. We prove in detail that our proposed strategy plays an important role in feature mining and eliminating redundant features. Compared with the existing semantic segmentation algorithms, our proposed algorithm has better robustness.
Abstract:To better retain the deep features of an image and solve the sparsity problem of the end-to-end segmentation model, we propose a new deep convolutional network model for medical image pixel segmentation, called MC-Net. The core of this network model consists of four parts, namely, an encoder network, a multiple max-pooling integration module, a cross multiscale deconvolution decoder network and a pixel-level classification layer. In the network structure of the encoder, we use multiscale convolution instead of the traditional single-channel convolution. The multiple max-pooling integration module first integrates the output features of each submodule of the encoder network and reduces the number of parameters by convolution using a kernel size of 1. At the same time, each max-pooling layer (the pooling size of each layer is different) is spliced after each convolution to achieve the translation invariance of the feature maps of each submodule. We use the output feature maps from the multiple max-pooling integration module as the input of the decoder network; the multiscale convolution of each submodule in the decoder network is cross-fused with the feature maps generated by the corresponding multiscale convolution in the encoder network. Using the above feature map processing methods solves the sparsity problem after the max-pooling layer-generating matrix and enhances the robustness of the classification. We compare our proposed model with the well-known Fully Convolutional Networks for Semantic Segmentation (FCNs), DecovNet, PSPNet, U-net, SgeNet and other state-of-the-art segmentation networks such as HyperDenseNet, MS-Dual, Espnetv2, Denseaspp using one binary Kaggle 2018 data science bowl dataset and two multiclass dataset and obtain encouraging experimental results.