School of Computer and Information, Hefei University of Technology, China
Abstract:The evolution of Large Language Model (LLM) agents towards System~2 reasoning, characterized by deliberative, high-precision problem-solving, requires maintaining rigorous logical integrity over extended horizons. However, prevalent memory preprocessing paradigms suffer from destructive de-contextualization. By compressing complex sequential dependencies into pre-defined structures (e.g., embeddings or graphs), these methods sever the contextual integrity essential for deep reasoning. To address this, we propose E-mem, a framework shifting from Memory Preprocessing to Episodic Context Reconstruction. Inspired by biological engrams, E-mem employs a heterogeneous hierarchical architecture where multiple assistant agents maintain uncompressed memory contexts, while a central master agent orchestrates global planning. Unlike passive retrieval, our mechanism empowers assistants to locally reason within activated segments, extracting context-aware evidence before aggregation. Evaluations on the LoCoMo benchmark demonstrate that E-mem achieves over 54\% F1, surpassing the state-of-the-art GAM by 7.75\%, while reducing token cost by over 70\%.
Abstract:We propose a drone signal out-of-distribution detection (OODD) algorithm based on the cognitive fusion of Zadoff-Chu (ZC) sequences and time-frequency images (TFI). ZC sequences are identified by analyzing the communication protocols of DJI drones, while TFI capture the time-frequency characteristics of drone signals with unknown or non-standard communication protocols. Both modalities are used jointly to enable OODD in the drone remote identification (RID) task. Specifically, ZC sequence features and TFI features are generated from the received radio frequency signals, which are then processed through dedicated feature extraction module to enhance and align them. The resultant multi-modal features undergo multi-modal feature interaction, single-modal feature fusion, and multi-modal feature fusion to produce features that integrate and complement information across modalities. Discrimination scores are computed from the fused features along both spatial and channel dimensions to capture time-frequency characteristic differences dictated by the communication protocols, and these scores will be transformed into adaptive attention weights. The weighted features are then passed through a Softmax function to produce the signal classification results. Simulation results demonstrate that the proposed algorithm outperforms existing algorithms and achieves 1.7% and 7.5% improvements in RID and OODD metrics, respectively. The proposed algorithm also performs strong robustness under varying flight conditions and across different drone types.
Abstract:We propose a drone signal out-of-distribution (OOD) detection algorithm based on discriminability-driven spatial-channel selection with a gradient norm. Time-frequency image features are adaptively weighted along both spatial and channel dimensions by quantifying inter-class similarity and variance based on protocol-specific time-frequency characteristics. Subsequently, a gradient-norm metric is introduced to measure perturbation sensitivity for capturing the inherent instability of OOD samples, which is then fused with energy-based scores for joint inference. Simulation results demonstrate that the proposed algorithm provides superior discriminative power and robust performance via SNR and various drone types.
Abstract:The transition of Large Language Models (LLMs) from passive knowledge retrievers to autonomous clinical agents demands a shift in evaluation-from static accuracy to dynamic behavioral reliability. To explore this boundary in dentistry, a domain where high-quality AI advice uniquely empowers patient-participatory decision-making, we present the Standardized Clinical Management & Performance Evaluation (SCMPE) benchmark, which comprehensively assesses performance from knowledge-oriented evaluations (static objective tasks) to workflow-based simulations (multi-turn simulated patient interactions). Our analysis reveals that while models demonstrate high proficiency in static objective tasks, their performance precipitates in dynamic clinical dialogues, identifying that the primary bottleneck lies not in knowledge retention, but in the critical challenges of active information gathering and dynamic state tracking. Mapping "Guideline Adherence" versus "Decision Quality" reveals a prevalent "High Efficacy, Low Safety" risk in general models. Furthermore, we quantify the impact of Retrieval-Augmented Generation (RAG). While RAG mitigates hallucinations in static tasks, its efficacy in dynamic workflows is limited and heterogeneous, sometimes causing degradation. This underscores that external knowledge alone cannot bridge the reasoning gap without domain-adaptive pre-training. This study empirically charts the capability boundaries of dental LLMs, providing a roadmap for bridging the gap between standardized knowledge and safe, autonomous clinical practice.
Abstract:Optical remote sensing imagery is indispensable for Earth observation, yet persistent cloud occlusion limits its downstream utility. Most cloud removal (CR) methods are optimized for low-level fidelity and can over-smooth textures and boundaries that are critical for analysis-ready data (ARD), leading to a mismatch between visually plausible restoration and semantic utility. To bridge this gap, we propose TDP-CR, a task-driven multimodal framework that jointly performs cloud removal and land-cover segmentation. Central to our approach is a Prompt-Guided Fusion (PGF) mechanism, which utilizes a learnable degradation prompt to encode cloud thickness and spatial uncertainty. By combining global channel context with local prompt-conditioned spatial bias, PGF adaptively integrates Synthetic Aperture Radar (SAR) information only where optical data is corrupted. We further introduce a parameter-efficient two-phase training strategy that decouples reconstruction and semantic representation learning. Experiments on the LuojiaSET-OSFCR dataset demonstrate the superiority of our framework: TDP-CR surpasses heavy state-of-the-art baselines by 0.18 dB in PSNR while using only 15\% of the parameters, and achieves a 1.4\% improvement in mIoU consistently against multi-task competitors, effectively delivering analysis-ready data.
Abstract:Offline Reinforcement Learning (RL) enables policy optimization from static datasets but is inherently vulnerable to backdoor attacks. Existing attack strategies typically struggle against safety-constrained algorithms (e.g., CQL) due to inefficient random poisoning and the use of easily detectable Out-of-Distribution (OOD) triggers. In this paper, we propose CS-GBA (Critical Sample-based Gradient-guided Backdoor Attack), a novel framework designed to achieve high stealthiness and destructiveness under a strict budget. Leveraging the theoretical insight that samples with high Temporal Difference (TD) errors are pivotal for value function convergence, we introduce an adaptive Critical Sample Selection strategy that concentrates the attack budget on the most influential transitions. To evade OOD detection, we propose a Correlation-Breaking Trigger mechanism that exploits the physical mutual exclusivity of state features (e.g., 95th percentile boundaries) to remain statistically concealed. Furthermore, we replace the conventional label inversion with a Gradient-Guided Action Generation mechanism, which searches for worst-case actions within the data manifold using the victim Q-network's gradient. Empirical results on D4RL benchmarks demonstrate that our method significantly outperforms state-of-the-art baselines, achieving high attack success rates against representative safety-constrained algorithms with a minimal 5% poisoning budget, while maintaining the agent's performance in clean environments.
Abstract:This paper presents a unified spoken language model for emotional intelligence, enhanced by a novel data construction strategy termed Injected Emotional-Attribution Thinking (IEAT). IEAT incorporates user emotional states and their underlying causes into the model's internal reasoning process, enabling emotion-aware reasoning to be internalized rather than treated as explicit supervision. The model is trained with a two-stage progressive strategy. The first stage performs speech-text alignment and emotional attribute modeling via self-distillation, while the second stage conducts end-to-end cross-modal joint optimization to ensure consistency between textual and spoken emotional expressions. Experiments on the Human-like Spoken Dialogue Systems Challenge (HumDial) Emotional Intelligence benchmark demonstrate that the proposed approach achieves top-ranked performance across emotional trajectory modeling, emotional reasoning, and empathetic response generation under both LLM-based and human evaluations.
Abstract:The rapid integration of Multimodal Large Language Models (MLLMs) into critical applications is increasingly hindered by persistent safety vulnerabilities. However, existing red-teaming benchmarks are often fragmented, limited to single-turn text interactions, and lack the scalability required for systematic evaluation. To address this, we introduce OpenRT, a unified, modular, and high-throughput red-teaming framework designed for comprehensive MLLM safety evaluation. At its core, OpenRT architects a paradigm shift in automated red-teaming by introducing an adversarial kernel that enables modular separation across five critical dimensions: model integration, dataset management, attack strategies, judging methods, and evaluation metrics. By standardizing attack interfaces, it decouples adversarial logic from a high-throughput asynchronous runtime, enabling systematic scaling across diverse models. Our framework integrates 37 diverse attack methodologies, spanning white-box gradients, multi-modal perturbations, and sophisticated multi-agent evolutionary strategies. Through an extensive empirical study on 20 advanced models (including GPT-5.2, Claude 4.5, and Gemini 3 Pro), we expose critical safety gaps: even frontier models fail to generalize across attack paradigms, with leading models exhibiting average Attack Success Rates as high as 49.14%. Notably, our findings reveal that reasoning models do not inherently possess superior robustness against complex, multi-turn jailbreaks. By open-sourcing OpenRT, we provide a sustainable, extensible, and continuously maintained infrastructure that accelerates the development and standardization of AI safety.
Abstract:Vector quantization (VQ) is a prevalent and fundamental technique that discretizes continuous feature vectors by approximating them using a codebook. As the diversity and complexity of data and models continue to increase, there is an urgent need for high-capacity, yet more compact VQ methods. This paper aims to reconcile this conflict by presenting a new approach called LooC, which utilizes an effective Low-dimensional codebook for Compositional vector quantization. Firstly, LooC introduces a parameter-efficient codebook by reframing the relationship between codevectors and feature vectors, significantly expanding its solution space. Instead of individually matching codevectors with feature vectors, LooC treats them as lower-dimensional compositional units within feature vectors and combines them, resulting in a more compact codebook with improved performance. Secondly, LooC incorporates a parameter-free extrapolation-by-interpolation mechanism to enhance and smooth features during the VQ process, which allows for better preservation of details and fidelity in feature approximation. The design of LooC leads to full codebook usage, effectively utilizing the compact codebook while avoiding the problem of collapse. Thirdly, LooC can serve as a plug-and-play module for existing methods for different downstream tasks based on VQ. Finally, extensive evaluations on different tasks, datasets, and architectures demonstrate that LooC outperforms existing VQ methods, achieving state-of-the-art performance with a significantly smaller codebook.
Abstract:Hash grids are widely used to learn an implicit neural field for Gaussian splatting, serving either as part of the entropy model or for inter-frame prediction. However, due to the irregular and non-uniform distribution of Gaussian splats in 3D space, numerous sparse regions exist, rendering many features in the hash grid invalid. This leads to redundant storage and transmission overhead. In this work, we propose a hash grid feature pruning method that identifies and prunes invalid features based on the coordinates of the input Gaussian splats, so that only the valid features are encoded. This approach reduces the storage size of the hash grid without compromising model performance, leading to improved rate-distortion performance. Following the Common Test Conditions (CTC) defined by the standardization committee, our method achieves an average bitrate reduction of 8% compared to the baseline approach.