Abstract:Prompt learning has become a prevalent strategy for adapting vision-language foundation models (VLMs) such as CLIP to downstream tasks. With the emergence of large language models (LLMs), recent studies have explored the potential of using category-related descriptions to enhance prompt effectiveness. However, conventional descriptions lack explicit structured information necessary to represent the interconnections among key elements like entities or attributes with relation to a particular category. Since existing prompt tuning methods give little consideration to managing structured knowledge, this paper advocates leveraging LLMs to construct a graph for each description to prioritize such structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Finally, by enhancing multi-granularity knowledge generation, redesigning the relationship-driven attention re-weighting module, and incorporating consistent constraints on the hierarchical text encoder, we propose HPT++, which further improves the performance of HPT. Our experiments are conducted across a wide range of evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization. Extensive results and ablation studies demonstrate the effectiveness of our methods, which consistently outperform existing SOTA methods.
Abstract:In this paper, we construct a large-scale benchmark dataset for Ground-to-Aerial Video-based person Re-Identification, named G2A-VReID, which comprises 185,907 images and 5,576 tracklets, featuring 2,788 distinct identities. To our knowledge, this is the first dataset for video ReID under Ground-to-Aerial scenarios. G2A-VReID dataset has the following characteristics: 1) Drastic view changes; 2) Large number of annotated identities; 3) Rich outdoor scenarios; 4) Huge difference in resolution. Additionally, we propose a new benchmark approach for cross-platform ReID by transforming the cross-platform visual alignment problem into visual-semantic alignment through vision-language model (i.e., CLIP) and applying a parameter-efficient Video Set-Level-Adapter module to adapt image-based foundation model to video ReID tasks, termed VSLA-CLIP. Besides, to further reduce the great discrepancy across the platforms, we also devise the platform-bridge prompts for efficient visual feature alignment. Extensive experiments demonstrate the superiority of the proposed method on all existing video ReID datasets and our proposed G2A-VReID dataset.
Abstract:Video temporal grounding is an emerging topic aiming to identify specific clips within videos. In addition to pre-trained video models, contemporary methods utilize pre-trained vision-language models (VLM) to capture detailed characteristics of diverse scenes and objects from video frames. However, as pre-trained on images, VLM may struggle to distinguish action-sensitive patterns from static objects, making it necessary to adapt them to specific data domains for effective feature representation over temporal grounding. We address two primary challenges to achieve this goal. Specifically, to mitigate high adaptation costs, we propose an efficient preliminary in-domain fine-tuning paradigm for feature adaptation, where downstream-adaptive features are learned through several pretext tasks. Furthermore, to integrate action-sensitive information into VLM, we introduce Action-Cue-Injected Temporal Prompt Learning (ActPrompt), which injects action cues into the image encoder of VLM for better discovering action-sensitive patterns. Extensive experiments demonstrate that ActPrompt is an off-the-shelf training framework that can be effectively applied to various SOTA methods, resulting in notable improvements. The complete code used in this study is provided in the supplementary materials.
Abstract:To facilitate the evolution of edge intelligence in ever-changing environments, we study on-device incremental learning constrained in limited computation resource in this paper. Current on-device training methods just focus on efficient training without considering the catastrophic forgetting, preventing the model getting stronger when continually exploring the world. To solve this problem, a direct solution is to involve the existing incremental learning mechanisms into the on-device training framework. Unfortunately, such a manner cannot work well as those mechanisms usually introduce large additional computational cost to the network optimization process, which would inevitably exceed the memory capacity of the edge devices. To address this issue, this paper makes an early effort to propose a simple but effective edge-friendly incremental learning framework. Based on an empirical study on the knowledge intensity of the kernel elements of the neural network, we find that the center kernel is the key for maximizing the knowledge intensity for learning new data, while freezing the other kernel elements would get a good balance on the model's capacity for overcoming catastrophic forgetting. Upon this finding, we further design a center-sensitive kernel optimization framework to largely alleviate the cost of the gradient computation and back-propagation. Besides, a dynamic channel element selection strategy is also proposed to facilitate a sparse orthogonal gradient projection for further reducing the optimization complexity, upon the knowledge explored from the new task data. Extensive experiments validate our method is efficient and effective, e.g., our method achieves average accuracy boost of 38.08% with even less memory and approximate computation compared to existing on-device training methods, indicating its significant potential for on-device incremental learning.
Abstract:Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL), by selecting and updating relevant prompts in the vision-transformer models. On the contrary, this paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features, so as to ensure no interference on tasks that have been learned to overcome catastrophic forgetting in CL. However, different from the orthogonal projection in the traditional CNN architecture, the prompt gradient orthogonal projection in the ViT architecture shows completely different and greater challenges, i.e., 1) the high-order and non-linear self-attention operation; 2) the drift of prompt distribution brought by the LayerNorm in the transformer block. Theoretically, we have finally deduced two consistency conditions to achieve the prompt gradient orthogonal projection, which provide a theoretical guarantee of eliminating interference on previously learned knowledge via the self-attention mechanism in visual prompt tuning. In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient orthogonal projection. Extensive experimental results demonstrate the effectiveness of anti-forgetting on four class-incremental benchmarks with diverse pre-trained baseline models, and our approach achieves superior performances to state-of-the-art methods. Our code is available at https://github.com/zugexiaodui/VPTinNSforCL.
Abstract:In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons. Systems in real-world environments constantly encounter adverse weather conditions that are not previously observed. Therefore, it practically requires adverse weather removal models to continually learn from incrementally collected data reflecting various degeneration types. Existing adverse weather removal approaches, for either single or multiple adverse weathers, are mainly designed for a static learning paradigm, which assumes that the data of all types of degenerations to handle can be finely collected at one time before a single-phase learning process. They thus cannot directly handle the incremental learning requirements. To address this issue, we made the earliest effort to investigate the continual all-in-one adverse weather removal task, in a setting closer to real-world applications. Specifically, we develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure. Equipped with a principal component projection and an effective knowledge distillation mechanism, the proposed KR techniques are tailored for the all-in-one weather removal task. It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated in the unified network structure. Extensive experimental results demonstrate the effectiveness of the proposed method to deal with this challenging task, which performs competitively to existing dedicated or joint training image restoration methods. Our code is available at https://github.com/xiaojihh/CL_all-in-one.
Abstract:Unsupervised visible-infrared person re-identification (USL-VI-ReID) aims to retrieve pedestrian images of the same identity from different modalities without annotations. While prior work focuses on establishing cross-modality pseudo-label associations to bridge the modality-gap, they ignore maintaining the instance-level homogeneous and heterogeneous consistency in pseudo-label space, resulting in coarse associations. In response, we introduce a Modality-Unified Label Transfer (MULT) module that simultaneously accounts for both homogeneous and heterogeneous fine-grained instance-level structures, yielding high-quality cross-modality label associations. It models both homogeneous and heterogeneous affinities, leveraging them to define the inconsistency for the pseudo-labels and then minimize it, leading to pseudo-labels that maintain alignment across modalities and consistency within intra-modality structures. Additionally, a straightforward plug-and-play Online Cross-memory Label Refinement (OCLR) module is proposed to further mitigate the impact of noisy pseudo-labels while simultaneously aligning different modalities, coupled with a Modality-Invariant Representation Learning (MIRL) framework. Experiments demonstrate that our proposed method outperforms existing USL-VI-ReID methods, highlighting the superiority of our MULT in comparison to other cross-modality association methods. The code will be available.
Abstract:Prompt learning has become a prevalent strategy for adapting vision-language foundation models to downstream tasks. As large language models (LLMs) have emerged, recent studies have explored the use of category-related descriptions as input to enhance prompt effectiveness. Nevertheless, conventional descriptions fall short of structured information that effectively represents the interconnections among entities or attributes linked to a particular category. To address this limitation and prioritize harnessing structured knowledge, this paper advocates for leveraging LLMs to build a graph for each description to model the entities and attributes describing the category, as well as their correlations. Preexisting prompt tuning methods exhibit inadequacies in managing this structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), which enables simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Extensive experiments demonstrate that our HPT shows strong effectiveness and generalizes much better than existing SOTA methods. Our code is available at https://github.com/Vill-Lab/2024-AAAI-HPT.
Abstract:Early weakly supervised video grounding (WSVG) methods often struggle with incomplete boundary detection due to the absence of temporal boundary annotations. To bridge the gap between video-level and boundary-level annotation, explicit-supervision methods, i.e., generating pseudo-temporal boundaries for training, have achieved great success. However, data augmentations in these methods might disrupt critical temporal information, yielding poor pseudo boundaries. In this paper, we propose a new perspective that maintains the integrity of the original temporal content while introducing more valuable information for expanding the incomplete boundaries. To this end, we propose EtC (Expand then Clarify), first use the additional information to expand the initial incomplete pseudo boundaries, and subsequently refine these expanded ones to achieve precise boundaries. Motivated by video continuity, i.e., visual similarity across adjacent frames, we use powerful multimodal large language models (MLLMs) to annotate each frame within initial pseudo boundaries, yielding more comprehensive descriptions for expanded boundaries. To further clarify the noise of expanded boundaries, we combine mutual learning with a tailored proposal-level contrastive objective to use a learnable approach to harmonize a balance between incomplete yet clean (initial) and comprehensive yet noisy (expanded) boundaries for more precise ones. Experiments demonstrate the superiority of our method on two challenging WSVG datasets.
Abstract:In this work, we construct a large-scale dataset for Ground-to-Aerial Person Search, named G2APS, which contains 31,770 images of 260,559 annotated bounding boxes for 2,644 identities appearing in both of the UAVs and ground surveillance cameras. To our knowledge, this is the first dataset for cross-platform intelligent surveillance applications, where the UAVs could work as a powerful complement for the ground surveillance cameras. To more realistically simulate the actual cross-platform Ground-to-Aerial surveillance scenarios, the surveillance cameras are fixed about 2 meters above the ground, while the UAVs capture videos of persons at different location, with a variety of view-angles, flight attitudes and flight modes. Therefore, the dataset has the following unique characteristics: 1) drastic view-angle changes between query and gallery person images from cross-platform cameras; 2) diverse resolutions, poses and views of the person images under 9 rich real-world scenarios. On basis of the G2APS benchmark dataset, we demonstrate detailed analysis about current two-step and end-to-end person search methods, and further propose a simple yet effective knowledge distillation scheme on the head of the ReID network, which achieves state-of-the-art performances on both of the G2APS and the previous two public person search datasets, i.e., PRW and CUHK-SYSU. The dataset and source code available on \url{https://github.com/yqc123456/HKD_for_person_search}.