Abstract:Prompt learning has become a prevalent strategy for adapting vision-language foundation models (VLMs) such as CLIP to downstream tasks. With the emergence of large language models (LLMs), recent studies have explored the potential of using category-related descriptions to enhance prompt effectiveness. However, conventional descriptions lack explicit structured information necessary to represent the interconnections among key elements like entities or attributes with relation to a particular category. Since existing prompt tuning methods give little consideration to managing structured knowledge, this paper advocates leveraging LLMs to construct a graph for each description to prioritize such structured knowledge. Consequently, we propose a novel approach called Hierarchical Prompt Tuning (HPT), enabling simultaneous modeling of both structured and conventional linguistic knowledge. Specifically, we introduce a relationship-guided attention module to capture pair-wise associations among entities and attributes for low-level prompt learning. In addition, by incorporating high-level and global-level prompts modeling overall semantics, the proposed hierarchical structure forges cross-level interlinks and empowers the model to handle more complex and long-term relationships. Finally, by enhancing multi-granularity knowledge generation, redesigning the relationship-driven attention re-weighting module, and incorporating consistent constraints on the hierarchical text encoder, we propose HPT++, which further improves the performance of HPT. Our experiments are conducted across a wide range of evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization. Extensive results and ablation studies demonstrate the effectiveness of our methods, which consistently outperform existing SOTA methods.
Abstract:Person Re-Identification (ReID) systems pose a significant security risk from backdoor attacks, allowing adversaries to evade tracking or impersonate others. Beyond recognizing this issue, we investigate how backdoor attacks can be deployed in real-world scenarios, where a ReID model is typically trained on data collected in the digital domain and then deployed in a physical environment. This attack scenario requires an attack flow that embeds backdoor triggers in the digital domain realistically enough to also activate the buried backdoor in person ReID models in the physical domain. This paper realizes this attack flow by leveraging a diffusion model to generate realistic accessories on pedestrian images (e.g., bags, hats, etc.) as backdoor triggers. However, the noticeable domain gap between the triggers generated by the off-the-shelf diffusion model and their physical counterparts results in a low attack success rate. Therefore, we introduce a novel diffusion-based physical backdoor attack (DiffPhysBA) method that adopts a training-free similarity-guided sampling process to enhance the resemblance between generated and physical triggers. Consequently, DiffPhysBA can generate realistic attributes as semantic-level triggers in the digital domain and provides higher physical ASR compared to the direct paste method by 25.6% on the real-world test set. Through evaluations on newly proposed real-world and synthetic ReID test sets, DiffPhysBA demonstrates an impressive success rate exceeding 90% in both the digital and physical domains. Notably, it excels in digital stealth metrics and can effectively evade state-of-the-art defense methods.
Abstract:In recent years, person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks. In this paper, we focus on the backdoor attack on deep ReID models. Existing backdoor attack methods follow an all-to-one/all attack scenario, where all the target classes in the test set have already been seen in the training set. However, ReID is a much more complex fine-grained open-set recognition problem, where the identities in the test set are not contained in the training set. Thus, previous backdoor attack methods for classification are not applicable for ReID. To ameliorate this issue, we propose a novel backdoor attack on deep ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA). Instead of learning fixed triggers for the target classes from the training set, DT-IBA can dynamically generate new triggers for any unknown identities. Specifically, an identity hashing network is proposed to first extract target identity information from a reference image, which is then injected into the benign images by image steganography. We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.