Abstract:Early exiting is an effective paradigm for improving the inference efficiency of pre-trained language models (PLMs) by dynamically adjusting the number of executed layers for each sample. However, in most existing works, easy and hard samples are treated equally by each classifier during training, which neglects the test-time early exiting behavior, leading to inconsistency between training and testing. Although some methods have tackled this issue under a fixed speed-up ratio, the challenge of flexibly adjusting the speed-up ratio while maintaining consistency between training and testing is still under-explored. To bridge the gap, we propose a novel Consistency-Oriented Signal-based Early Exiting (COSEE) framework, which leverages a calibrated sample weighting mechanism to enable each classifier to emphasize the samples that are more likely to exit at that classifier under various acceleration scenarios. Extensive experiments on the GLUE benchmark demonstrate the effectiveness of our COSEE across multiple exiting signals and backbones, yielding a better trade-off between performance and efficiency.
Abstract:Reconstruction of static visual stimuli from non-invasion brain activity fMRI achieves great success, owning to advanced deep learning models such as CLIP and Stable Diffusion. However, the research on fMRI-to-video reconstruction remains limited since decoding the spatiotemporal perception of continuous visual experiences is formidably challenging. We contend that the key to addressing these challenges lies in accurately decoding both high-level semantics and low-level perception flows, as perceived by the brain in response to video stimuli. To the end, we propose NeuroClips, an innovative framework to decode high-fidelity and smooth video from fMRI. NeuroClips utilizes a semantics reconstructor to reconstruct video keyframes, guiding semantic accuracy and consistency, and employs a perception reconstructor to capture low-level perceptual details, ensuring video smoothness. During inference, it adopts a pre-trained T2V diffusion model injected with both keyframes and low-level perception flows for video reconstruction. Evaluated on a publicly available fMRI-video dataset, NeuroClips achieves smooth high-fidelity video reconstruction of up to 6s at 8FPS, gaining significant improvements over state-of-the-art models in various metrics, e.g., a 128% improvement in SSIM and an 81% improvement in spatiotemporal metrics. Our project is available at https://github.com/gongzix/NeuroClips.
Abstract:Exploring the mysteries of the human brain is a long-term research topic in neuroscience. With the help of deep learning, decoding visual information from human brain activity fMRI has achieved promising performance. However, these decoding models require centralized storage of fMRI data to conduct training, leading to potential privacy security issues. In this paper, we focus on privacy preservation in multi-individual brain visual decoding. To this end, we introduce a novel framework called FedMinds, which utilizes federated learning to protect individuals' privacy during model training. In addition, we deploy individual adapters for each subject, thus allowing personalized visual decoding. We conduct experiments on the authoritative NSD datasets to evaluate the performance of the proposed framework. The results demonstrate that our framework achieves high-precision visual decoding along with privacy protection.
Abstract:The twin support vector machine (TWSVM) classifier has attracted increasing attention because of its low computational complexity. However, its performance tends to degrade when samples are affected by noise. The granular-ball fuzzy support vector machine (GBFSVM) classifier partly alleviates the adverse effects of noise, but it relies solely on the distance between the granular-ball's center and the class center to design the granular-ball membership function. In this paper, we first introduce the granular-ball twin support vector machine (GBTWSVM) classifier, which integrates granular-ball computing (GBC) with the twin support vector machine (TWSVM) classifier. By replacing traditional point inputs with granular-balls, we demonstrate how to derive a pair of non-parallel hyperplanes for the GBTWSVM classifier by solving a quadratic programming problem. Subsequently, we design the membership and non-membership functions of granular-balls using Pythagorean fuzzy sets to differentiate the contributions of granular-balls in various regions. Additionally, we develop the granular-ball fuzzy twin support vector machine (GBFTSVM) classifier by incorporating GBC with the fuzzy twin support vector machine (FTSVM) classifier. We demonstrate how to derive a pair of non-parallel hyperplanes for the GBFTSVM classifier by solving a quadratic programming problem. We also design algorithms for the GBTSVM classifier and the GBFTSVM classifier. Finally, the superior classification performance of the GBTWSVM classifier and the GBFTSVM classifier on 20 benchmark datasets underscores their scalability, efficiency, and robustness in tackling classification tasks.
Abstract:Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success, leading to rapid advancements in multimodal studies. However, CLIP faces a notable challenge in terms of inefficient data utilization. It relies on a single contrastive supervision for each image-text pair during representation learning, disregarding a substantial amount of valuable information that could offer richer supervision. Additionally, the retention of non-informative tokens leads to increased computational demands and time costs, particularly in CLIP's ViT image encoder. To address these issues, we propose Multi-Perspective Language-Image Pretraining (MLIP). In MLIP, we leverage the frequency transform's sensitivity to both high and low-frequency variations, which complements the spatial domain's sensitivity limited to low-frequency variations only. By incorporating frequency transforms and token-level alignment, we expand CILP's single supervision into multi-domain and multi-level supervision, enabling a more thorough exploration of informative image features. Additionally, we introduce a token merging method guided by comprehensive semantics from the frequency and spatial domains. This allows us to merge tokens to multi-granularity tokens with a controllable compression rate to accelerate CLIP. Extensive experiments validate the effectiveness of our design.
Abstract:Decoding visual information from human brain activity has seen remarkable advancements in recent research. However, due to the significant variability in cortical parcellation and cognition patterns across subjects, current approaches personalized deep models for each subject, constraining the practicality of this technology in real-world contexts. To tackle the challenges, we introduce Wills Aligner, a robust multi-subject brain representation learner. Our Wills Aligner initially aligns different subjects' brains at the anatomical level. Subsequently, it incorporates a mixture of brain experts to learn individual cognition patterns. Additionally, it decouples the multi-subject learning task into a two-stage training, propelling the deep model and its plugin network to learn inter-subject commonality knowledge and various cognition patterns, respectively. Wills Aligner enables us to overcome anatomical differences and to efficiently leverage a single model for multi-subject brain representation learning. We meticulously evaluate the performance of our approach across coarse-grained and fine-grained visual decoding tasks. The experimental results demonstrate that our Wills Aligner achieves state-of-the-art performance.
Abstract:Decoding natural visual scenes from brain activity has flourished, with extensive research in single-subject tasks and, however, less in cross-subject tasks. Reconstructing high-quality images in cross-subject tasks is a challenging problem due to profound individual differences between subjects and the scarcity of data annotation. In this work, we proposed MindTuner for cross-subject visual decoding, which achieves high-quality and rich-semantic reconstructions using only 1 hour of fMRI training data benefiting from the phenomena of visual fingerprint in the human visual system and a novel fMRI-to-text alignment paradigm. Firstly, we pre-train a multi-subject model among 7 subjects and fine-tune it with scarce data on new subjects, where LoRAs with Skip-LoRAs are utilized to learn the visual fingerprint. Then, we take the image modality as the intermediate pivot modality to achieve fMRI-to-text alignment, which achieves impressive fMRI-to-text retrieval performance and corrects fMRI-to-image reconstruction with fine-tuned semantics. The results of both qualitative and quantitative analyses demonstrate that MindTuner surpasses state-of-the-art cross-subject visual decoding models on the Natural Scenes Dataset (NSD), whether using training data of 1 hour or 40 hours.
Abstract:Multimodal Sentiment Analysis (MSA) aims to identify speakers' sentiment tendencies in multimodal video content, raising serious concerns about privacy risks associated with multimodal data, such as voiceprints and facial images. Recent distributed collaborative learning has been verified as an effective paradigm for privacy preservation in multimodal tasks. However, they often overlook the privacy distinctions among different modalities, struggling to strike a balance between performance and privacy preservation. Consequently, it poses an intriguing question of maximizing multimodal utilization to improve performance while simultaneously protecting necessary modalities. This paper forms the first attempt at modality-specified (i.e., audio and visual) privacy preservation in MSA tasks. We propose a novel Hybrid Distributed cross-modality cGAN framework (HyDiscGAN), which learns multimodality alignment to generate fake audio and visual features conditioned on shareable de-identified textual data. The objective is to leverage the fake features to approximate real audio and visual content to guarantee privacy preservation while effectively enhancing performance. Extensive experiments show that compared with the state-of-the-art MSA model, HyDiscGAN can achieve superior or competitive performance while preserving privacy.
Abstract:Early exiting has demonstrated its effectiveness in accelerating the inference of pre-trained language models like BERT by dynamically adjusting the number of layers executed. However, most existing early exiting methods only consider local information from an individual test sample to determine their exiting indicators, failing to leverage the global information offered by sample population. This leads to suboptimal estimation of prediction correctness, resulting in erroneous exiting decisions. To bridge the gap, we explore the necessity of effectively combining both local and global information to ensure reliable early exiting during inference. Purposefully, we leverage prototypical networks to learn class prototypes and devise a distance metric between samples and class prototypes. This enables us to utilize global information for estimating the correctness of early predictions. On this basis, we propose a novel Distance-Enhanced Early Exiting framework for BERT (DE$^3$-BERT). DE$^3$-BERT implements a hybrid exiting strategy that supplements classic entropy-based local information with distance-based global information to enhance the estimation of prediction correctness for more reliable early exiting decisions. Extensive experiments on the GLUE benchmark demonstrate that DE$^3$-BERT consistently outperforms state-of-the-art models under different speed-up ratios with minimal storage or computational overhead, yielding a better trade-off between model performance and inference efficiency. Additionally, an in-depth analysis further validates the generality and interpretability of our method.
Abstract:In real-world scenarios, multimodal federated learning often faces the practical challenge of intricate modality missing, which poses constraints on building federated frameworks and significantly degrades model inference accuracy. Existing solutions for addressing missing modalities generally involve developing modality-specific encoders on clients and training modality fusion modules on servers. However, these methods are primarily constrained to specific scenarios with either unimodal clients or complete multimodal clients, struggling to generalize effectively in the intricate modality missing scenarios. In this paper, we introduce a prototype library into the FedAvg-based Federated Learning framework, thereby empowering the framework with the capability to alleviate the global model performance degradation resulting from modality missing during both training and testing. The proposed method utilizes prototypes as masks representing missing modalities to formulate a task-calibrated training loss and a model-agnostic uni-modality inference strategy. In addition, a proximal term based on prototypes is constructed to enhance local training. Experimental results demonstrate the state-of-the-art performance of our approach. Compared to the baselines, our method improved inference accuracy by 3.7\% with 50\% modality missing during training and by 23.8\% during uni-modality inference. Code is available at https://github.com/BaoGuangYin/PmcmFL.