Abstract:Reconstruction of static visual stimuli from non-invasion brain activity fMRI achieves great success, owning to advanced deep learning models such as CLIP and Stable Diffusion. However, the research on fMRI-to-video reconstruction remains limited since decoding the spatiotemporal perception of continuous visual experiences is formidably challenging. We contend that the key to addressing these challenges lies in accurately decoding both high-level semantics and low-level perception flows, as perceived by the brain in response to video stimuli. To the end, we propose NeuroClips, an innovative framework to decode high-fidelity and smooth video from fMRI. NeuroClips utilizes a semantics reconstructor to reconstruct video keyframes, guiding semantic accuracy and consistency, and employs a perception reconstructor to capture low-level perceptual details, ensuring video smoothness. During inference, it adopts a pre-trained T2V diffusion model injected with both keyframes and low-level perception flows for video reconstruction. Evaluated on a publicly available fMRI-video dataset, NeuroClips achieves smooth high-fidelity video reconstruction of up to 6s at 8FPS, gaining significant improvements over state-of-the-art models in various metrics, e.g., a 128% improvement in SSIM and an 81% improvement in spatiotemporal metrics. Our project is available at https://github.com/gongzix/NeuroClips.
Abstract:Accurate segmentation of colorectal polyps in colonoscopy images is crucial for effective diagnosis and management of colorectal cancer (CRC). However, current deep learning-based methods primarily rely on fusing RGB information across multiple scales, leading to limitations in accurately identifying polyps due to restricted RGB domain information and challenges in feature misalignment during multi-scale aggregation. To address these limitations, we propose the Polyp Segmentation Network with Shunted Transformer (PSTNet), a novel approach that integrates both RGB and frequency domain cues present in the images. PSTNet comprises three key modules: the Frequency Characterization Attention Module (FCAM) for extracting frequency cues and capturing polyp characteristics, the Feature Supplementary Alignment Module (FSAM) for aligning semantic information and reducing misalignment noise, and the Cross Perception localization Module (CPM) for synergizing frequency cues with high-level semantics to achieve efficient polyp segmentation. Extensive experiments on challenging datasets demonstrate PSTNet's significant improvement in polyp segmentation accuracy across various metrics, consistently outperforming state-of-the-art methods. The integration of frequency domain cues and the novel architectural design of PSTNet contribute to advancing computer-assisted polyp segmentation, facilitating more accurate diagnosis and management of CRC.
Abstract:Accurate skin lesion segmentation from dermoscopic images is of great importance for skin cancer diagnosis. However, automatic segmentation of melanoma remains a challenging task because it is difficult to incorporate useful texture representations into the learning process. Texture representations are not only related to the local structural information learned by CNN, but also include the global statistical texture information of the input image. In this paper, we propose a trans\textbf{Former} network (\textbf{SkinFormer}) that efficiently extracts and fuses statistical texture representation for \textbf{Skin} lesion segmentation. Specifically, to quantify the statistical texture of input features, a Kurtosis-guided Statistical Counting Operator is designed. We propose Statistical Texture Fusion Transformer and Statistical Texture Enhance Transformer with the help of Kurtosis-guided Statistical Counting Operator by utilizing the transformer's global attention mechanism. The former fuses structural texture information and statistical texture information, and the latter enhances the statistical texture of multi-scale features. {Extensive experiments on three publicly available skin lesion datasets validate that our SkinFormer outperforms other SOAT methods, and our method achieves 93.2\% Dice score on ISIC 2018. It can be easy to extend SkinFormer to segment 3D images in the future.} Our code is available at https://github.com/Rongtao-Xu/SkinFormer.
Abstract:Vision-language models (VLMs) have demonstrated remarkable open-vocabulary object recognition capabilities, motivating their adaptation for dense prediction tasks like segmentation. However, directly applying VLMs to such tasks remains challenging due to their lack of pixel-level granularity and the limited data available for fine-tuning, leading to overfitting and poor generalization. To address these limitations, we propose Generalization Boosted Adapter (GBA), a novel adapter strategy that enhances the generalization and robustness of VLMs for open-vocabulary segmentation. GBA comprises two core components: (1) a Style Diversification Adapter (SDA) that decouples features into amplitude and phase components, operating solely on the amplitude to enrich the feature space representation while preserving semantic consistency; and (2) a Correlation Constraint Adapter (CCA) that employs cross-attention to establish tighter semantic associations between text categories and target regions, suppressing irrelevant low-frequency ``noise'' information and avoiding erroneous associations. Through the synergistic effect of the shallow SDA and the deep CCA, GBA effectively alleviates overfitting issues and enhances the semantic relevance of feature representations. As a simple, efficient, and plug-and-play component, GBA can be flexibly integrated into various CLIP-based methods, demonstrating broad applicability and achieving state-of-the-art performance on multiple open-vocabulary segmentation benchmarks.
Abstract:Infrared small object detection is an important computer vision task involving the recognition and localization of tiny objects in infrared images, which usually contain only a few pixels. However, it encounters difficulties due to the diminutive size of the objects and the generally complex backgrounds in infrared images. In this paper, we propose a deep learning method, HCF-Net, that significantly improves infrared small object detection performance through multiple practical modules. Specifically, it includes the parallelized patch-aware attention (PPA) module, dimension-aware selective integration (DASI) module, and multi-dilated channel refiner (MDCR) module. The PPA module uses a multi-branch feature extraction strategy to capture feature information at different scales and levels. The DASI module enables adaptive channel selection and fusion. The MDCR module captures spatial features of different receptive field ranges through multiple depth-separable convolutional layers. Extensive experimental results on the SIRST infrared single-frame image dataset show that the proposed HCF-Net performs well, surpassing other traditional and deep learning models. Code is available at https://github.com/zhengshuchen/HCFNet.
Abstract:Vision-and-Language Navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavour to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometer and depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision-making and instruction following. We train NaVid with 550k navigation samples collected from VLN-CE trajectories, including action-planning and instruction-reasoning samples, along with 665k large-scale web data. Extensive experiments show that NaVid achieves SOTA performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
Abstract:Local feature matching enjoys wide-ranging applications in the realm of computer vision, encompassing domains such as image retrieval, 3D reconstruction, and object recognition. However, challenges persist in improving the accuracy and robustness of matching due to factors like viewpoint and lighting variations. In recent years, the introduction of deep learning models has sparked widespread exploration into local feature matching techniques. The objective of this endeavor is to furnish a comprehensive overview of local feature matching methods. These methods are categorized into two key segments based on the presence of detectors. The Detector-based category encompasses models inclusive of Detect-then-Describe, Joint Detection and Description, Describe-then-Detect, as well as Graph Based techniques. In contrast, the Detector-free category comprises CNN Based, Transformer Based, and Patch Based methods. Our study extends beyond methodological analysis, incorporating evaluations of prevalent datasets and metrics to facilitate a quantitative comparison of state-of-the-art techniques. The paper also explores the practical application of local feature matching in diverse domains such as Structure from Motion, Remote Sensing Image Registration, and Medical Image Registration, underscoring its versatility and significance across various fields. Ultimately, we endeavor to outline the current challenges faced in this domain and furnish future research directions, thereby serving as a reference for researchers involved in local feature matching and its interconnected domains.
Abstract:Recently, CLIP has found practical utility in the domain of pixel-level zero-shot segmentation tasks. The present landscape features two-stage methodologies beset by issues such as intricate pipelines and elevated computational costs. While current one-stage approaches alleviate these concerns and incorporate Visual Prompt Training (VPT) to uphold CLIP's generalization capacity, they still fall short in fully harnessing CLIP's potential for pixel-level unseen class demarcation and precise pixel predictions. To further stimulate CLIP's zero-shot dense prediction capability, we propose SPT-SEG, a one-stage approach that improves CLIP's adaptability from image to pixel. Specifically, we initially introduce Spectral Prompt Tuning (SPT), incorporating spectral prompts into the CLIP visual encoder's shallow layers to capture structural intricacies of images, thereby enhancing comprehension of unseen classes. Subsequently, we introduce the Spectral Guided Decoder (SGD), utilizing both high and low-frequency information to steer the network's spatial focus towards more prominent classification features, enabling precise pixel-level prediction outcomes. Through extensive experiments on two public datasets, we demonstrate the superiority of our method over state-of-the-art approaches, performing well across all classes and particularly excelling in handling unseen classes. Code is available at:https://github.com/clearxu/SPT.
Abstract:In recent years, the rapid advancement of Large Language Models (LLMs) such as the Generative Pre-trained Transformer (GPT) has attracted increasing attention due to their potential in a variety of practical applications. The application of LLMs with Embodied Intelligence has emerged as a significant area of focus. Among the myriad applications of LLMs, navigation tasks are particularly noteworthy because they demand a deep understanding of the environment and quick, accurate decision-making. LLMs can augment embodied intelligence systems with sophisticated environmental perception and decision-making support, leveraging their robust language and image-processing capabilities. This article offers an exhaustive summary of the symbiosis between LLMs and embodied intelligence with a focus on navigation. It reviews state-of-the-art models, research methodologies, and assesses the advantages and disadvantages of existing embodied navigation models and datasets. Finally, the article elucidates the role of LLMs in embodied intelligence, based on current research, and forecasts future directions in the field. A comprehensive list of studies in this survey is available at https://github.com/Rongtao-Xu/Awesome-LLM-EN
Abstract:Local feature detection and description play an important role in many computer vision tasks, which are designed to detect and describe keypoints in "any scene" and "any downstream task". Data-driven local feature learning methods need to rely on pixel-level correspondence for training, which is challenging to acquire at scale, thus hindering further improvements in performance. In this paper, we propose SAMFeat to introduce SAM (segment anything model), a fundamental model trained on 11 million images, as a teacher to guide local feature learning and thus inspire higher performance on limited datasets. To do so, first, we construct an auxiliary task of Pixel Semantic Relational Distillation (PSRD), which distillates feature relations with category-agnostic semantic information learned by the SAM encoder into a local feature learning network, to improve local feature description using semantic discrimination. Second, we develop a technique called Weakly Supervised Contrastive Learning Based on Semantic Grouping (WSC), which utilizes semantic groupings derived from SAM as weakly supervised signals, to optimize the metric space of local descriptors. Third, we design an Edge Attention Guidance (EAG) to further improve the accuracy of local feature detection and description by prompting the network to pay more attention to the edge region guided by SAM. SAMFeat's performance on various tasks such as image matching on HPatches, and long-term visual localization on Aachen Day-Night showcases its superiority over previous local features. The release code is available at https://github.com/vignywang/SAMFeat.