Abstract:Accurate skin lesion segmentation from dermoscopic images is of great importance for skin cancer diagnosis. However, automatic segmentation of melanoma remains a challenging task because it is difficult to incorporate useful texture representations into the learning process. Texture representations are not only related to the local structural information learned by CNN, but also include the global statistical texture information of the input image. In this paper, we propose a trans\textbf{Former} network (\textbf{SkinFormer}) that efficiently extracts and fuses statistical texture representation for \textbf{Skin} lesion segmentation. Specifically, to quantify the statistical texture of input features, a Kurtosis-guided Statistical Counting Operator is designed. We propose Statistical Texture Fusion Transformer and Statistical Texture Enhance Transformer with the help of Kurtosis-guided Statistical Counting Operator by utilizing the transformer's global attention mechanism. The former fuses structural texture information and statistical texture information, and the latter enhances the statistical texture of multi-scale features. {Extensive experiments on three publicly available skin lesion datasets validate that our SkinFormer outperforms other SOAT methods, and our method achieves 93.2\% Dice score on ISIC 2018. It can be easy to extend SkinFormer to segment 3D images in the future.} Our code is available at https://github.com/Rongtao-Xu/SkinFormer.
Abstract:Infrared small object detection is an important computer vision task involving the recognition and localization of tiny objects in infrared images, which usually contain only a few pixels. However, it encounters difficulties due to the diminutive size of the objects and the generally complex backgrounds in infrared images. In this paper, we propose a deep learning method, HCF-Net, that significantly improves infrared small object detection performance through multiple practical modules. Specifically, it includes the parallelized patch-aware attention (PPA) module, dimension-aware selective integration (DASI) module, and multi-dilated channel refiner (MDCR) module. The PPA module uses a multi-branch feature extraction strategy to capture feature information at different scales and levels. The DASI module enables adaptive channel selection and fusion. The MDCR module captures spatial features of different receptive field ranges through multiple depth-separable convolutional layers. Extensive experimental results on the SIRST infrared single-frame image dataset show that the proposed HCF-Net performs well, surpassing other traditional and deep learning models. Code is available at https://github.com/zhengshuchen/HCFNet.