Abstract:Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?" we affirmatively respond and introduce a robust zero-shot COS framework. This framework leverages the inherent local pattern bias of COS and employs a broad semantic feature space derived from salient object segmentation (SOS) for efficient zero-shot transfer. We incorporate an Masked Image Modeling (MIM) based image encoder optimized for Parameter-Efficient Fine-Tuning (PEFT), a Multimodal Large Language Model (M-LLM), and a Multi-scale Fine-grained Alignment (MFA) mechanism. The MIM pre-trained image encoder focuses on capturing essential low-level features, while the M-LLM generates caption embeddings processed alongside these visual cues. These embeddings are precisely aligned using MFA, enabling our framework to accurately interpret and navigate complex semantic contexts. To optimize operational efficiency, we introduce a learnable codebook that represents the M-LLM during inference, significantly reducing computational overhead. Our framework demonstrates its versatility and efficacy through rigorous experimentation, achieving state-of-the-art performance in zero-shot COS with $F_{\beta}^w$ scores of 72.9\% on CAMO and 71.7\% on COD10K. By removing the M-LLM during inference, we achieve an inference speed comparable to that of traditional end-to-end models, reaching 18.1 FPS. Code: https://github.com/R-LEI360725/ZSCOS-CaMF
Abstract:Through the collaboration of multiple agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within these systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task is effectively resolved, leading to satisfactory responses to the original queries. These principles further inspire us to propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. During the planning process, the meta-agent is also responsible for evaluating the performance of the expert agents, making timely adjustments to the sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of the proposed framework in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
Abstract:Platooning technology is renowned for its precise vehicle control, traffic flow optimization, and energy efficiency enhancement. However, in large-scale mixed platoons, vehicle heterogeneity and unpredictable traffic conditions lead to virtual bottlenecks. These bottlenecks result in reduced traffic throughput and increased energy consumption within the platoon. To address these challenges, we introduce a decision-making strategy based on nested graph reinforcement learning. This strategy improves collaborative decision-making, ensuring energy efficiency and alleviating congestion. We propose a theory of nested traffic graph representation that maps dynamic interactions between vehicles and platoons in non-Euclidean spaces. By incorporating spatio-temporal weighted graph into a multi-head attention mechanism, we further enhance the model's capacity to process both local and global data. Additionally, we have developed a nested graph reinforcement learning framework to enhance the self-iterative learning capabilities of platooning. Using the I-24 dataset, we designed and conducted comparative algorithm experiments, generalizability testing, and permeability ablation experiments, thereby validating the proposed strategy's effectiveness. Compared to the baseline, our strategy increases throughput by 10% and decreases energy use by 9%. Specifically, increasing the penetration rate of CAVs significantly enhances traffic throughput, though it also increases energy consumption.
Abstract:High-level synthesis (HLS) has significantly advanced the automation of digital circuits design, yet the need for expertise and time in pragma tuning remains challenging. Existing solutions for the design space exploration (DSE) adopt either heuristic methods, lacking essential information for further optimization potential, or predictive models, missing sufficient generalization due to the time-consuming nature of HLS and the exponential growth of the design space. To address these challenges, we propose Deep Inverse Design for HLS (DID4HLS), a novel approach that integrates graph neural networks and generative models. DID4HLS iteratively optimizes hardware designs aimed at compute-intensive algorithms by learning conditional distributions of design features from post-HLS data. Compared to four state-of-the-art DSE baselines, our method achieved an average improvement of 42.5% on average distance to reference set (ADRS) compared to the best-performing baselines across six benchmarks, while demonstrating high robustness and efficiency.
Abstract:Image enhancement holds extensive applications in real-world scenarios due to complex environments and limitations of imaging devices. Conventional methods are often constrained by their tailored models, resulting in diminished robustness when confronted with challenging degradation conditions. In response, we propose FlowIE, a simple yet highly effective flow-based image enhancement framework that estimates straight-line paths from an elementary distribution to high-quality images. Unlike previous diffusion-based methods that suffer from long-time inference, FlowIE constructs a linear many-to-one transport mapping via conditioned rectified flow. The rectification straightens the trajectories of probability transfer, accelerating inference by an order of magnitude. This design enables our FlowIE to fully exploit rich knowledge in the pre-trained diffusion model, rendering it well-suited for various real-world applications. Moreover, we devise a faster inference algorithm, inspired by Lagrange's Mean Value Theorem, harnessing midpoint tangent direction to optimize path estimation, ultimately yielding visually superior results. Thanks to these designs, our FlowIE adeptly manages a diverse range of enhancement tasks within a concise sequence of fewer than 5 steps. Our contributions are rigorously validated through comprehensive experiments on synthetic and real-world datasets, unveiling the compelling efficacy and efficiency of our proposed FlowIE. Code is available at https://github.com/EternalEvan/FlowIE.
Abstract:Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily modeling, both of which are critical but challenging to break through. To tackle these challenges, in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks. Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterphilous parts based on the pseudo assignments during training. The heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns are propagated with a novel semantic-aware message passing mechanism. We conduct extensive experiments on 9 benchmark datasets with different levels of homophily. Experimental results show that our method outperforms representative baselines on heterophilous datasets.
Abstract:Accurate phenotypic analysis in aquaculture breeding necessitates the quantification of subtle morphological phenotypes. Existing datasets suffer from limitations such as small scale, limited species coverage, and inadequate annotation of keypoints for measuring refined and complex morphological phenotypes of fish body parts. To address this gap, we introduce FishPhenoKey, a comprehensive dataset comprising 23,331 high-resolution images spanning six fish species. Notably, FishPhenoKey includes 22 phenotype-oriented annotations, enabling the capture of intricate morphological phenotypes. Motivated by the nuanced evaluation of these subtle morphologies, we also propose a new evaluation metric, Percentage of Measured Phenotype (PMP). It is designed to assess the accuracy of individual keypoint positions and is highly sensitive to the phenotypes measured using the corresponding keypoints. To enhance keypoint detection accuracy, we further propose a novel loss, Anatomically-Calibrated Regularization (ACR), that can be integrated into keypoint detection models, leveraging biological insights to refine keypoint localization. Our contributions set a new benchmark in fish phenotype analysis, addressing the challenges of precise morphological quantification and opening new avenues for research in sustainable aquaculture and genetic studies. Our dataset and code are available at https://github.com/WeizhenLiuBioinform/Fish-Phenotype-Detect.
Abstract:Hierarchical leaf vein segmentation is a crucial but under-explored task in agricultural sciences, where analysis of the hierarchical structure of plant leaf venation can contribute to plant breeding. While current segmentation techniques rely on data-driven models, there is no publicly available dataset specifically designed for hierarchical leaf vein segmentation. To address this gap, we introduce the HierArchical Leaf Vein Segmentation (HALVS) dataset, the first public hierarchical leaf vein segmentation dataset. HALVS comprises 5,057 real-scanned high-resolution leaf images collected from three plant species: soybean, sweet cherry, and London planetree. It also includes human-annotated ground truth for three orders of leaf veins, with a total labeling effort of 83.8 person-days. Based on HALVS, we further develop a label-efficient learning paradigm that leverages partial label information, i.e. missing annotations for tertiary veins. Empirical studies are performed on HALVS, revealing new observations, challenges, and research directions on leaf vein segmentation.
Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.
Abstract:The recovery of occluded human meshes presents challenges for current methods due to the difficulty in extracting effective image features under severe occlusion. In this paper, we introduce DPMesh, an innovative framework for occluded human mesh recovery that capitalizes on the profound diffusion prior about object structure and spatial relationships embedded in a pre-trained text-to-image diffusion model. Unlike previous methods reliant on conventional backbones for vanilla feature extraction, DPMesh seamlessly integrates the pre-trained denoising U-Net with potent knowledge as its image backbone and performs a single-step inference to provide occlusion-aware information. To enhance the perception capability for occluded poses, DPMesh incorporates well-designed guidance via condition injection, which produces effective controls from 2D observations for the denoising U-Net. Furthermore, we explore a dedicated noisy key-point reasoning approach to mitigate disturbances arising from occlusion and crowded scenarios. This strategy fully unleashes the perceptual capability of the diffusion prior, thereby enhancing accuracy. Extensive experiments affirm the efficacy of our framework, as we outperform state-of-the-art methods on both occlusion-specific and standard datasets. The persuasive results underscore its ability to achieve precise and robust 3D human mesh recovery, particularly in challenging scenarios involving occlusion and crowded scenes.