School of Information and Communication Engineering, University of Electronic Science and Technology of China
Abstract:Semantic segmentation in videos has been a focal point of recent research. However, existing models encounter challenges when faced with unfamiliar categories. To address this, we introduce the Open Vocabulary Video Semantic Segmentation (OV-VSS) task, designed to accurately segment every pixel across a wide range of open-vocabulary categories, including those that are novel or previously unexplored. To enhance OV-VSS performance, we propose a robust baseline, OV2VSS, which integrates a spatial-temporal fusion module, allowing the model to utilize temporal relationships across consecutive frames. Additionally, we incorporate a random frame enhancement module, broadening the model's understanding of semantic context throughout the entire video sequence. Our approach also includes video text encoding, which strengthens the model's capability to interpret textual information within the video context. Comprehensive evaluations on benchmark datasets such as VSPW and Cityscapes highlight OV-VSS's zero-shot generalization capabilities, especially in handling novel categories. The results validate OV2VSS's effectiveness, demonstrating improved performance in semantic segmentation tasks across diverse video datasets.
Abstract:Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?" we affirmatively respond and introduce a robust zero-shot COS framework. This framework leverages the inherent local pattern bias of COS and employs a broad semantic feature space derived from salient object segmentation (SOS) for efficient zero-shot transfer. We incorporate an Masked Image Modeling (MIM) based image encoder optimized for Parameter-Efficient Fine-Tuning (PEFT), a Multimodal Large Language Model (M-LLM), and a Multi-scale Fine-grained Alignment (MFA) mechanism. The MIM pre-trained image encoder focuses on capturing essential low-level features, while the M-LLM generates caption embeddings processed alongside these visual cues. These embeddings are precisely aligned using MFA, enabling our framework to accurately interpret and navigate complex semantic contexts. To optimize operational efficiency, we introduce a learnable codebook that represents the M-LLM during inference, significantly reducing computational overhead. Our framework demonstrates its versatility and efficacy through rigorous experimentation, achieving state-of-the-art performance in zero-shot COS with $F_{\beta}^w$ scores of 72.9\% on CAMO and 71.7\% on COD10K. By removing the M-LLM during inference, we achieve an inference speed comparable to that of traditional end-to-end models, reaching 18.1 FPS. Code: https://github.com/R-LEI360725/ZSCOS-CaMF
Abstract:In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance. Most present learned techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context. However, extant methods are highly dependent on the fixed hand-crafted causal context. The question of how to guide the auto-encoder to generate a more effective causal context benefit for the autoregressive entropy models is worth exploring. In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss (CCA-loss). By imposing the CCA-loss, we enable the neural network to spontaneously adjust important information into the early stage of the autoregressive entropy model. Furthermore, as transformer technology develops remarkably, variants of which have been adopted by many state-of-the-art (SOTA) LIC techniques. The existing computing devices have not adapted the calculation of the attention mechanism well, which leads to a burden on computation quantity and inference latency. To overcome it, we establish a convolutional neural network (CNN) image compression model and adopt the unevenly channel-wise grouped strategy for high efficiency. Ultimately, the proposed CNN-based LIC network trained with our Causal Context Adjustment loss attains a great trade-off between inference latency and rate-distortion performance.
Abstract:Perceiving the surrounding environment is a fundamental task in autonomous driving. To obtain highly accurate perception results, modern autonomous driving systems typically employ multi-modal sensors to collect comprehensive environmental data. Among these, the radar-camera multi-modal perception system is especially favored for its excellent sensing capabilities and cost-effectiveness. However, the substantial modality differences between radar and camera sensors pose challenges in fusing information. To address this problem, this paper presents RCBEVDet, a radar-camera fusion 3D object detection framework. Specifically, RCBEVDet is developed from an existing camera-based 3D object detector, supplemented by a specially designed radar feature extractor, RadarBEVNet, and a Cross-Attention Multi-layer Fusion (CAMF) module. Firstly, RadarBEVNet encodes sparse radar points into a dense bird's-eye-view (BEV) feature using a dual-stream radar backbone and a Radar Cross Section aware BEV encoder. Secondly, the CAMF module utilizes a deformable attention mechanism to align radar and camera BEV features and adopts channel and spatial fusion layers to fuse them. To further enhance RCBEVDet's capabilities, we introduce RCBEVDet++, which advances the CAMF through sparse fusion, supports query-based multi-view camera perception models, and adapts to a broader range of perception tasks. Extensive experiments on the nuScenes show that our method integrates seamlessly with existing camera-based 3D perception models and improves their performance across various perception tasks. Furthermore, our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks. Notably, with ViT-L as the image backbone, RCBEVDet++ achieves 72.73 NDS and 67.34 mAP in 3D object detection without test-time augmentation or model ensembling.
Abstract:Cooperation between temporal convolutional networks (TCN) and graph convolutional networks (GCN) as a processing module has shown promising results in skeleton-based video anomaly detection (SVAD). However, to maintain a lightweight model with low computational and storage complexity, shallow GCN and TCN blocks are constrained by small receptive fields and a lack of cross-dimension interaction capture. To tackle this limitation, we propose a lightweight module called the Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in spatio-temporal skeletal data. It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops. Furthermore, the proposed Dual Attention Normalizing Flow (DA-Flow) integrates the DAM as a post-processing unit after GCN within the normalizing flow framework. Simulations show that the proposed model is robust against noise and negative samples. Experimental results show that DA-Flow reaches competitive or better performance than the existing state-of-the-art (SOTA) methods in terms of the micro AUC metric with the fewest number of parameters. Moreover, we found that even without training, simply using random projection without dimensionality reduction on skeleton data enables substantial anomaly detection capabilities.
Abstract:Additive models can be used for interpretable machine learning for their clarity and simplicity. However, In the classical models for high-order data, the vectorization operation disrupts the data structure, which may lead to degenerated accuracy and increased computational complexity. To deal with these problems, we propose the tensor polynomial addition model (TPAM). It retains the multidimensional structure information of high-order inputs with tensor representation. The model parameter compression is achieved using a hierarchical and low-order symmetric tensor approximation. In this way, complex high-order feature interactions can be captured with fewer parameters. Moreover, The TPAM preserves the inherent interpretability of additive models, facilitating transparent decision-making and the extraction of meaningful feature values. Additionally, leveraging TPAM's transparency and ability to handle higher-order features, it is used as a post-processing module for other interpretation models by introducing two variants for class activation maps. Experimental results on a series of datasets demonstrate that TPAM can enhance accuracy by up to 30\%, and compression rate by up to 5 times, while maintaining a good interpretability.
Abstract:Implicit neural representations (INR) suffer from worsening spectral bias, which results in overly smooth solutions to the inverse problem. To deal with this problem, we propose a universal framework for processing inverse problems called \textbf{High-Order Implicit Neural Representations (HOIN)}. By refining the traditional cascade structure to foster high-order interactions among features, HOIN enhances the model's expressive power and mitigates spectral bias through its neural tangent kernel's (NTK) strong diagonal properties, accelerating and optimizing inverse problem resolution. By analyzing the model's expression space, high-order derivatives, and the NTK matrix, we theoretically validate the feasibility of HOIN. HOIN realizes 1 to 3 dB improvements in most inverse problems, establishing a new state-of-the-art recovery quality and training efficiency, thus providing a new general paradigm for INR and paving the way for it to solve the inverse problem.
Abstract:This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field.
Abstract:Phase shifting profilometry (PSP) is favored in high-precision 3D scanning due to its high accuracy, robustness, and pixel-wise property. However, a fundamental assumption of PSP that the object should remain static is violated in dynamic measurement, making PSP susceptible to object moving, resulting in ripple-like errors in the point clouds. We propose a pixel-wise and frame-wise loopable binomial self-compensation (BSC) algorithm to effectively and flexibly eliminate motion error in the four-step PSP. Our mathematical model demonstrates that by summing successive motion-affected phase frames weighted by binomial coefficients, motion error exponentially diminishes as the binomial order increases, accomplishing automatic error compensation through the motion-affected phase sequence, without the assistance of any intermediate variable. Extensive experiments show that our BSC outperforms the existing methods in reducing motion error, while achieving a depth map frame rate equal to the camera's acquisition rate (90 fps), enabling high-accuracy 3D reconstruction with a quasi-single-shot frame rate.
Abstract:Three-dimensional object detection is one of the key tasks in autonomous driving. To reduce costs in practice, low-cost multi-view cameras for 3D object detection are proposed to replace the expansive LiDAR sensors. However, relying solely on cameras is difficult to achieve highly accurate and robust 3D object detection. An effective solution to this issue is combining multi-view cameras with the economical millimeter-wave radar sensor to achieve more reliable multi-modal 3D object detection. In this paper, we introduce RCBEVDet, a radar-camera fusion 3D object detection method in the bird's eye view (BEV). Specifically, we first design RadarBEVNet for radar BEV feature extraction. RadarBEVNet consists of a dual-stream radar backbone and a Radar Cross-Section (RCS) aware BEV encoder. In the dual-stream radar backbone, a point-based encoder and a transformer-based encoder are proposed to extract radar features, with an injection and extraction module to facilitate communication between the two encoders. The RCS-aware BEV encoder takes RCS as the object size prior to scattering the point feature in BEV. Besides, we present the Cross-Attention Multi-layer Fusion module to automatically align the multi-modal BEV feature from radar and camera with the deformable attention mechanism, and then fuse the feature with channel and spatial fusion layers. Experimental results show that RCBEVDet achieves new state-of-the-art radar-camera fusion results on nuScenes and view-of-delft (VoD) 3D object detection benchmarks. Furthermore, RCBEVDet achieves better 3D detection results than all real-time camera-only and radar-camera 3D object detectors with a faster inference speed at 21~28 FPS. The source code will be released at https://github.com/VDIGPKU/RCBEVDet.