School of Economics, Zhejiang University of Technology, Hangzhou, P.R.China
Abstract:Controllable generation is considered a potentially vital approach to address the challenge of annotating 3D data, and the precision of such controllable generation becomes particularly imperative in the context of data production for autonomous driving. Existing methods focus on the integration of diverse generative information into controlling inputs, utilizing frameworks such as GLIGEN or ControlNet, to produce commendable outcomes in controllable generation. However, such approaches intrinsically restrict generation performance to the learning capacities of predefined network architectures. In this paper, we explore the integration of controlling information and introduce PerlDiff (Perspective-Layout Diffusion Models), a method for effective street view image generation that fully leverages perspective 3D geometric information. Our PerlDiff employs 3D geometric priors to guide the generation of street view images with precise object-level control within the network learning process, resulting in a more robust and controllable output. Moreover, it demonstrates superior controllability compared to alternative layout control methods. Empirical results justify that our PerlDiff markedly enhances the precision of generation on the NuScenes and KITTI datasets. Our codes and models are publicly available at https://github.com/LabShuHangGU/PerlDiff.
Abstract:Audio Deepfake Detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), voice conversion (VC) and replay, etc., which is an emerging topic. Traditionally we take the mono signal as input and focus on robust feature extraction and effective classifier design. However, the dual-channel stereo information in the audio signal also includes important cues for deepfake, which has not been studied in the prior work. In this paper, we propose a novel ADD model, termed as M2S-ADD, that attempts to discover audio authenticity cues during the mono-to-stereo conversion process. We first projects the mono to a stereo signal using a pretrained stereo synthesizer, then employs a dual-branch neural architecture to process the left and right channel signals, respectively. In this way, we effectively reveal the artifacts in the fake audio, thus improve the ADD performance. The experiments on the ASVspoof2019 database show that M2S-ADD outperforms all baselines that input mono. We release the source code at \url{https://github.com/AI-S2-Lab/M2S-ADD}.
Abstract:We propose a twin support vector quantile regression (TSVQR) to capture the heterogeneous and asymmetric information in modern data. Using a quantile parameter, TSVQR effectively depicts the heterogeneous distribution information with respect to all portions of data points. Correspondingly, TSVQR constructs two smaller sized quadratic programming problems (QPPs) to generate two nonparallel planes to measure the distributional asymmetry between the lower and upper bounds at each quantile level. The QPPs in TSVQR are smaller and easier to solve than those in previous quantile regression methods. Moreover, the dual coordinate descent algorithm for TSVQR also accelerates the training speed. Experimental results on six artiffcial data sets, ffve benchmark data sets, two large scale data sets, two time-series data sets, and two imbalanced data sets indicate that the TSVQR outperforms previous quantile regression methods in terms of the effectiveness of completely capturing the heterogeneous and asymmetric information and the efffciency of the learning process.