Abstract:Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?" we affirmatively respond and introduce a robust zero-shot COS framework. This framework leverages the inherent local pattern bias of COS and employs a broad semantic feature space derived from salient object segmentation (SOS) for efficient zero-shot transfer. We incorporate an Masked Image Modeling (MIM) based image encoder optimized for Parameter-Efficient Fine-Tuning (PEFT), a Multimodal Large Language Model (M-LLM), and a Multi-scale Fine-grained Alignment (MFA) mechanism. The MIM pre-trained image encoder focuses on capturing essential low-level features, while the M-LLM generates caption embeddings processed alongside these visual cues. These embeddings are precisely aligned using MFA, enabling our framework to accurately interpret and navigate complex semantic contexts. To optimize operational efficiency, we introduce a learnable codebook that represents the M-LLM during inference, significantly reducing computational overhead. Our framework demonstrates its versatility and efficacy through rigorous experimentation, achieving state-of-the-art performance in zero-shot COS with $F_{\beta}^w$ scores of 72.9\% on CAMO and 71.7\% on COD10K. By removing the M-LLM during inference, we achieve an inference speed comparable to that of traditional end-to-end models, reaching 18.1 FPS. Code: https://github.com/R-LEI360725/ZSCOS-CaMF
Abstract:Multi-channel EEG signals are commonly used for the diagnosis and assessment of diseases such as epilepsy. Currently, various EEG diagnostic algorithms based on deep learning have been developed. However, most research efforts focus solely on diagnosing and classifying current signal data but do not consider the prediction of future trends for early warning. Additionally, since multi-channel EEG can be essentially regarded as the spatio-temporal signal data received by detectors at different locations in the brain, how to construct spatio-temporal information representations of EEG signals to facilitate future trend prediction for multi-channel EEG becomes an important problem. This study proposes a multi-signal prediction algorithm based on generative diffusion models (EEG-DIF), which transforms the multi-signal forecasting task into an image completion task, allowing for comprehensive representation and learning of the spatio-temporal correlations and future developmental patterns of multi-channel EEG signals. Here, we employ a publicly available epilepsy EEG dataset to construct and validate the EEG-DIF. The results demonstrate that our method can accurately predict future trends for multi-channel EEG signals simultaneously. Furthermore, the early warning accuracy for epilepsy seizures based on the generated EEG data reaches 0.89. In general, EEG-DIF provides a novel approach for characterizing multi-channel EEG signals and an innovative early warning algorithm for epilepsy seizures, aiding in optimizing and enhancing the clinical diagnosis process. The code is available at https://github.com/JZK00/EEG-DIF.
Abstract:Automatic medical report generation (MRG), which aims to produce detailed text reports from medical images, has emerged as a critical task in this domain. MRG systems can enhance radiological workflows by reducing the time and effort required for report writing, thereby improving diagnostic efficiency. In this work, we present a novel approach for automatic MRG utilizing a multimodal large language model. Specifically, we employed the 3D Vision Transformer (ViT3D) image encoder introduced from M3D-CLIP to process 3D scans and use the Asclepius-Llama3-8B as the language model to generate the text reports by auto-regressive decoding. The experiment shows our model achieved an average Green score of 0.3 on the MRG task validation set and an average accuracy of 0.61 on the visual question answering (VQA) task validation set, outperforming the baseline model. Our approach demonstrates the effectiveness of the ViT3D alignment of LLaMA3 for automatic MRG and VQA tasks by tuning the model on a small dataset.
Abstract:Diabetic macular edema (DME) is a severe complication of diabetes, characterized by thickening of the central portion of the retina due to accumulation of fluid. DME is a significant and common cause of visual impairment in diabetic patients. Center-involved DME (ci-DME) is the highest risk form of disease as fluid extends close to the fovea which is responsible for sharp central vision. Earlier diagnosis or prediction of ci-DME may improve treatment outcomes. Here, we propose an ensemble method to predict ci-DME onset within a year using ultra-wide-field color fundus photography (UWF-CFP) images provided by the DIAMOND Challenge. We adopted a variety of baseline state-of-the-art classification networks including ResNet, DenseNet, EfficientNet, and VGG with the aim of enhancing model robustness. The best performing models were Densenet 121, Resnet 152 and EfficientNet b7, and these were assembled into a definitive predictive model. The final ensemble model demonstrates a strong performance with an Area Under Curve (AUC) of 0.7017, an F1 score of 0.6512, and an Expected Calibration Error (ECE) of 0.2057 when deployed on a synthetic dataset. The performance of this ensemble model is comparable to previous studies despite training and testing in a more realistic setting, indicating the potential of UWF-CFP combined with a deep learning classification system to facilitate earlier diagnosis, better treatment decisions, and improved prognostication in ci-DME.
Abstract:Accurate and timely modeling of labor migration is crucial for various urban governance and commercial tasks, such as local policy-making and business site selection. However, existing studies on labor migration largely rely on limited survey data with statistical methods, which fail to deliver timely and fine-grained insights for time-varying regional trends. To this end, we propose a deep learning-based spatial-temporal labor migration analysis framework, DHG-SIL, by leveraging large-scale job query data. Specifically, we first acquire labor migration intention as a proxy of labor migration via job queries from one of the world's largest search engines. Then, a Disprepant Homophily co-preserved Graph Convolutional Network (DH-GCN) and an interpretable temporal module are respectively proposed to capture cross-city and sequential labor migration dependencies. Besides, we introduce four interpretable variables to quantify city migration properties, which are co-optimized with city representations via tailor-designed contrastive losses. Extensive experiments on three real-world datasets demonstrate the superiority of our DHG-SIL. Notably, DHG-SIL has been deployed as a core component of a cooperative partner's intelligent human resource system, and the system supported a series of city talent attraction reports.
Abstract:Labor market forecasting on talent demand and supply is essential for business management and economic development. With accurate and timely forecasts, employers can adapt their recruitment strategies to align with the evolving labor market, and employees can have proactive career path planning according to future demand and supply. However, previous studies ignore the interconnection between demand-supply sequences among different companies and positions for predicting variations. Moreover, companies are reluctant to share their private human resource data for global labor market analysis due to concerns over jeopardizing competitive advantage, security threats, and potential ethical or legal violations. To this end, in this paper, we formulate the Federated Labor Market Forecasting (FedLMF) problem and propose a Meta-personalized Convergence-aware Clustered Federated Learning (MPCAC-FL) framework to provide accurate and timely collaborative talent demand and supply prediction in a privacy-preserving way. First, we design a graph-based sequential model to capture the inherent correlation between demand and supply sequences and company-position pairs. Second, we adopt meta-learning techniques to learn effective initial model parameters that can be shared across companies, allowing personalized models to be optimized for forecasting company-specific demand and supply, even when companies have heterogeneous data. Third, we devise a Convergence-aware Clustering algorithm to dynamically divide companies into groups according to model similarity and apply federated aggregation in each group. The heterogeneity can be alleviated for more stable convergence and better performance. Extensive experiments demonstrate that MPCAC-FL outperforms compared baselines on three real-world datasets and achieves over 97% of the state-of-the-art model, i.e., DH-GEM, without exposing private company data.
Abstract:Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality. The effectiveness of current clinical interventions for AF is often limited by an incomplete understanding of the atrial anatomical structures that sustain this arrhythmia. Late Gadolinium-Enhanced MRI (LGE-MRI) has emerged as a critical imaging modality for assessing atrial fibrosis and scarring, which are essential markers for predicting the success of ablation procedures in AF patients. The Multi-class Bi-Atrial Segmentation (MBAS) challenge at MICCAI 2024 aims to enhance the segmentation of both left and right atria and their walls using a comprehensive dataset of 200 multi-center 3D LGE-MRIs, labelled by experts. This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data. The ensemble model was evaluated using the Dice Similarity Coefficient (DSC) and 95% Hausdorff distance (HD95) on the left & right atrium wall, right atrium cavity, and left atrium cavity. On the internal testing dataset, the model achieved a DSC of 88.41%, 98.48%, 98.45% and an HD95 of 1.07, 0.95, 0.64 respectively. This demonstrates the effectiveness of the ensemble model in improving segmentation accuracy. The approach contributes to advancing the understanding of AF and supports the development of more targeted and effective ablation strategies.
Abstract:Ensemble learning is a meta-learning approach that combines the predictions of multiple learners, demonstrating improved accuracy and robustness. Nevertheless, ensembling models like Convolutional Neural Networks (CNNs) result in high memory and computing overhead, preventing their deployment in embedded systems. These devices are usually equipped with small batteries that provide power supply and might include energy-harvesting modules that extract energy from the environment. In this work, we propose E-QUARTIC, a novel Energy Efficient Edge Ensembling framework to build ensembles of CNNs targeting Artificial Intelligence (AI)-based embedded systems. Our design outperforms single-instance CNN baselines and state-of-the-art edge AI solutions, improving accuracy and adapting to varying energy conditions while maintaining similar memory requirements. Then, we leverage the multi-CNN structure of the designed ensemble to implement an energy-aware model selection policy in energy-harvesting AI systems. We show that our solution outperforms the state-of-the-art by reducing system failure rate by up to 40% while ensuring higher average output qualities. Ultimately, we show that the proposed design enables concurrent on-device training and high-quality inference execution at the edge, limiting the performance and energy overheads to less than 0.04%.
Abstract:In this study, we developed an Evidence-based Ensemble Neural Network, namely EVENet, for anatomical brain parcellation using diffusion MRI. The key innovation of EVENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. Using EVENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions, enhancing the interpretability and reliability of the segmentation results.
Abstract:Thermography is especially valuable for the military and other users of surveillance cameras. Some recent methods based on Neural Radiance Fields (NeRF) are proposed to reconstruct the thermal scenes in 3D from a set of thermal and RGB images. However, unlike NeRF, 3D Gaussian splatting (3DGS) prevails due to its rapid training and real-time rendering. In this work, we propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities. We first calibrate the RGB camera and the thermal camera to ensure that both modalities are accurately aligned. Subsequently, we use the registered images to learn the multimodal 3D Gaussians. To prevent the overfitting of any single modality, we introduce several multimodal regularization constraints. We also develop smoothing constraints tailored to the physical characteristics of the thermal modality. Besides, we contribute a real-world dataset named RGBT-Scenes, captured by a hand-hold thermal-infrared camera, facilitating future research on thermal scene reconstruction. We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images. With the proposed multimodal regularization constraints, we also reduced the model's storage cost by 90\%. The code and dataset will be released.