Abstract:Evaluating the clinical correctness and reasoning fidelity of automatically generated medical imaging reports remains a critical yet unresolved challenge. Existing evaluation methods often fail to capture the structured diagnostic logic that underlies radiological interpretation, resulting in unreliable judgments and limited clinical relevance. We introduce AgentsEval, a multi-agent stream reasoning framework that emulates the collaborative diagnostic workflow of radiologists. By dividing the evaluation process into interpretable steps including criteria definition, evidence extraction, alignment, and consistency scoring, AgentsEval provides explicit reasoning traces and structured clinical feedback. We also construct a multi-domain perturbation-based benchmark covering five medical report datasets with diverse imaging modalities and controlled semantic variations. Experimental results demonstrate that AgentsEval delivers clinically aligned, semantically faithful, and interpretable evaluations that remain robust under paraphrastic, semantic, and stylistic perturbations. This framework represents a step toward transparent and clinically grounded assessment of medical report generation systems, fostering trustworthy integration of large language models into clinical practice.
Abstract:Current Large Language Models (LLMs) exhibit a critical modal disconnect: they possess vast semantic knowledge but lack the procedural grounding to respect the immutable laws of the physical world. Consequently, while these agents implicitly function as world models, their simulations often suffer from physical hallucinations-generating plans that are logically sound but physically unexecutable. Existing alignment strategies predominantly rely on resource-intensive training or fine-tuning, which attempt to compress dynamic environmental rules into static model parameters. However, such parametric encapsulation is inherently rigid, struggling to adapt to the open-ended variability of physical dynamics without continuous, costly retraining. To bridge this gap, we introduce WorldMind, a framework that autonomously constructs a symbolic World Knowledge Repository by synthesizing environmental feedback. Specifically, it unifies Process Experience to enforce physical feasibility via prediction errors and Goal Experience to guide task optimality through successful trajectories. Experiments on EB-ALFRED and EB-Habitat demonstrate that WorldMind achieves superior performance compared to baselines with remarkable cross-model and cross-environment transferability.
Abstract:Optimizing communication topology in LLM-based multi-agent system is critical for enabling collective intelligence. Existing methods mainly rely on spatio-temporal interaction paradigms, where the sequential execution of multi-round dialogues incurs high latency and computation. Motivated by the recent insights that evaluation and debate mechanisms can improve problem-solving in multi-agent systems, we propose TopoDIM, a framework for one-shot Topology generation with Diverse Interaction Modes. Designed for decentralized execution to enhance adaptability and privacy, TopoDIM enables agents to autonomously construct heterogeneous communication without iterative coordination, achieving token efficiency and improved task performance. Experiments demonstrate that TopoDIM reduces total token consumption by 46.41% while improving average performance by 1.50% over state-of-the-art methods. Moreover, the framework exhibits strong adaptability in organizing communication among heterogeneous agents. Code is available at: https://anonymous.4open.science/r/TopoDIM-8D35/
Abstract:Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to achieve remarkable reasoning in domains like mathematics and coding, where verifiable rewards provide clear signals. However, extending this paradigm to financial decision is challenged by the market's stochastic nature: rewards are verifiable but inherently noisy, causing standard RL to degenerate into reward hacking. To address this, we propose Trade-R1, a model training framework that bridges verifiable rewards to stochastic environments via process-level reasoning verification. Our key innovation is a verification method that transforms the problem of evaluating reasoning over lengthy financial documents into a structured Retrieval-Augmented Generation (RAG) task. We construct a triangular consistency metric, assessing pairwise alignment between retrieved evidence, reasoning chains, and decisions to serve as a validity filter for noisy market returns. We explore two reward integration strategies: Fixed-effect Semantic Reward (FSR) for stable alignment signals, and Dynamic-effect Semantic Reward (DSR) for coupled magnitude optimization. Experiments on different country asset selection demonstrate that our paradigm reduces reward hacking, with DSR achieving superior cross-market generalization while maintaining the highest reasoning consistency.
Abstract:The multi-lead electrocardiogram (ECG) stands as a cornerstone of cardiac diagnosis. Recent strides in electrocardiogram self-supervised learning (eSSL) have brightened prospects for enhancing representation learning without relying on high-quality annotations. Yet earlier eSSL methods suffer a key limitation: they focus on consistent patterns across leads and beats, overlooking the inherent differences in heartbeats rooted in cardiac conduction processes, while subtle but significant variations carry unique physiological signatures. Moreover, representation learning for ECG analysis should align with ECG diagnostic guidelines, which progress from individual heartbeats to single leads and ultimately to lead combinations. This sequential logic, however, is often neglected when applying pre-trained models to downstream tasks. To address these gaps, we propose CLEAR-HUG, a two-stage framework designed to capture subtle variations in cardiac conduction across leads while adhering to ECG diagnostic guidelines. In the first stage, we introduce an eSSL model termed Conduction-LEAd Reconstructor (CLEAR), which captures both specific variations and general commonalities across heartbeats. Treating each heartbeat as a distinct entity, CLEAR employs a simple yet effective sparse attention mechanism to reconstruct signals without interference from other heartbeats. In the second stage, we implement a Hierarchical lead-Unified Group head (HUG) for disease diagnosis, mirroring clinical workflow. Experimental results across six tasks show a 6.84% improvement, validating the effectiveness of CLEAR-HUG. This highlights its ability to enhance representations of cardiac conduction and align patterns with expert diagnostic guidelines.
Abstract:Signal decay and regime shifts pose recurring challenges for data-driven investment strategies in non-stationary markets. Conventional time-series and machine learning approaches, which rely primarily on historical correlations, often struggle to generalize when the economic environment changes. While large language models (LLMs) offer strong capabilities for processing unstructured information, their potential to support quantitative factor screening through explicit economic reasoning remains underexplored. Existing factor-based methods typically reduce alphas to numerical time series, overlooking the semantic rationale that determines when a factor is economically relevant. We propose Alpha-R1, an 8B-parameter reasoning model trained via reinforcement learning for context-aware alpha screening. Alpha-R1 reasons over factor logic and real-time news to evaluate alpha relevance under changing market conditions, selectively activating or deactivating factors based on contextual consistency. Empirical results across multiple asset pools show that Alpha-R1 consistently outperforms benchmark strategies and exhibits improved robustness to alpha decay. The full implementation and resources are available at https://github.com/FinStep-AI/Alpha-R1.
Abstract:Large language models (LLMs) have demonstrated remarkable advances in mathematical and logical reasoning, yet statistics, as a distinct and integrative discipline, remains underexplored in benchmarking efforts. To address this gap, we introduce \textbf{StatEval}, the first comprehensive benchmark dedicated to statistics, spanning both breadth and depth across difficulty levels. StatEval consists of 13,817 foundational problems covering undergraduate and graduate curricula, together with 2374 research-level proof tasks extracted from leading journals. To construct the benchmark, we design a scalable multi-agent pipeline with human-in-the-loop validation that automates large-scale problem extraction, rewriting, and quality control, while ensuring academic rigor. We further propose a robust evaluation framework tailored to both computational and proof-based tasks, enabling fine-grained assessment of reasoning ability. Experimental results reveal that while closed-source models such as GPT5-mini achieve below 57\% on research-level problems, with open-source models performing significantly lower. These findings highlight the unique challenges of statistical reasoning and the limitations of current LLMs. We expect StatEval to serve as a rigorous benchmark for advancing statistical intelligence in large language models. All data and code are available on our web platform: https://stateval.github.io/.
Abstract:The development of Large AI Models (LAMs) for wireless communications, particularly for complex tasks like spectrum sensing, is critically dependent on the availability of vast, diverse, and realistic datasets. Addressing this need, this paper introduces the ChangShuoRadioData (CSRD) framework, an open-source, modular simulation platform designed for generating large-scale synthetic radio frequency (RF) data. CSRD simulates the end-to-end transmission and reception process, incorporating an extensive range of modulation schemes (100 types, including analog, digital, OFDM, and OTFS), configurable channel models featuring both statistical fading and site-specific ray tracing using OpenStreetMap data, and detailed modeling of realistic RF front-end impairments for various antenna configurations (SISO/MISO/MIMO). Using this framework, we characterize CSRD2025, a substantial dataset benchmark comprising over 25,000,000 frames (approx. 200TB), which is approximately 10,000 times larger than the widely used RML2018 dataset. CSRD2025 offers unprecedented signal diversity and complexity, specifically engineered to bridge the Sim2Real gap. Furthermore, we provide processing pipelines to convert IQ data into spectrograms annotated in COCO format, facilitating object detection approaches for time-frequency signal analysis. The dataset specification includes standardized 8:1:1 training, validation, and test splits (via frame indices) to ensure reproducible research. The CSRD framework is released at https://github.com/Singingkettle/ChangShuoRadioData to accelerate the advancement of AI-driven spectrum sensing and management.
Abstract:Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.
Abstract:Capsule Network (CapsNet) has demonstrated significant potential in visual recognition by capturing spatial relationships and part-whole hierarchies for learning equivariant feature representations. However, existing CapsNet and variants often rely on a single high-level feature map, overlooking the rich complementary information from multi-scale features. Furthermore, conventional feature fusion strategies (e.g., addition and concatenation) struggle to reconcile multi-scale feature discrepancies, leading to suboptimal classification performance. To address these limitations, we propose the Multi-Scale Patchify Capsule Network (MSPCaps), a novel architecture that integrates multi-scale feature learning and efficient capsule routing. Specifically, MSPCaps consists of three key components: a Multi-Scale ResNet Backbone (MSRB), a Patchify Capsule Layer (PatchifyCaps), and Cross-Agreement Routing (CAR) blocks. First, the MSRB extracts diverse multi-scale feature representations from input images, preserving both fine-grained details and global contextual information. Second, the PatchifyCaps partitions these multi-scale features into primary capsules using a uniform patch size, equipping the model with the ability to learn from diverse receptive fields. Finally, the CAR block adaptively routes the multi-scale capsules by identifying cross-scale prediction pairs with maximum agreement. Unlike the simple concatenation of multiple self-routing blocks, CAR ensures that only the most coherent capsules contribute to the final voting. Our proposed MSPCaps achieves remarkable scalability and superior robustness, consistently surpassing multiple baseline methods in terms of classification accuracy, with configurations ranging from a highly efficient Tiny model (344.3K parameters) to a powerful Large model (10.9M parameters), highlighting its potential in advancing feature representation learning.