Beihang University
Abstract:We introduce HunyuanProver, an language model finetuned from the Hunyuan 7B for interactive automatic theorem proving with LEAN4. To alleviate the data sparsity issue, we design a scalable framework to iterative synthesize data with low cost. Besides, guided tree search algorithms are designed to enable effective ``system 2 thinking`` of the prover. HunyuanProver achieves state-of-the-art (SOTA) performances on major benchmarks. Specifically, it achieves a pass of 68.4% on the miniF2F-test compared to 65.9%, the current SOTA results. It proves 4 IMO statements (imo_1960_p2, imo_1962_p2}, imo_1964_p2 and imo_1983_p6) in miniF2F-test. To benefit the community, we will open-source a dataset of 30k synthesized instances, where each instance contains the original question in natural language, the converted statement by autoformalization, and the proof by HunyuanProver.
Abstract:De novo generation of hit-like molecules is a challenging task in the drug discovery process. Most methods in previous studies learn the semantics and syntax of molecular structures by analyzing molecular graphs or simplified molecular input line entry system (SMILES) strings; however, they do not take into account the drug responses of the biological systems consisting of genes and proteins. In this study we propose a deep generative model, Gx2Mol, which utilizes gene expression profiles to generate molecular structures with desirable phenotypes for arbitrary target proteins. In the algorithm, a variational autoencoder is employed as a feature extractor to learn the latent feature distribution of the gene expression profiles. Then, a long short-term memory is leveraged as the chemical generator to produce syntactically valid SMILES strings that satisfy the feature conditions of the gene expression profile extracted by the feature extractor. Experimental results and case studies demonstrate that the proposed Gx2Mol model can produce new molecules with potential bioactivities and drug-like properties.
Abstract:One key characteristic of the Chinese spelling check (CSC) task is that incorrect characters are usually similar to the correct ones in either phonetics or glyph. To accommodate this, previous works usually leverage confusion sets, which suffer from two problems, i.e., difficulty in determining which character pairs to include and lack of probabilities to distinguish items in the set. In this paper, we propose a light-weight plug-and-play DISC (i.e., decoding intervention with similarity of characters) module for CSC models.DISC measures phonetic and glyph similarities between characters and incorporates this similarity information only during the inference phase. This method can be easily integrated into various existing CSC models, such as ReaLiSe, SCOPE, and ReLM, without additional training costs. Experiments on three CSC benchmarks demonstrate that our proposed method significantly improves model performance, approaching and even surpassing the current state-of-the-art models.
Abstract:Object detection in Unmanned Aerial Vehicle (UAV) images has emerged as a focal area of research, which presents two significant challenges: i) objects are typically small and dense within vast images; ii) computational resource constraints render most models unsuitable for real-time deployment. Current real-time object detectors are not optimized for UAV images, and complex methods designed for small object detection often lack real-time capabilities. To address these challenges, we propose a novel detector, RemDet (Reparameter efficient multiplication Detector). Our contributions are as follows: 1) Rethinking the challenges of existing detectors for small and dense UAV images, and proposing information loss as a design guideline for efficient models. 2) We introduce the ChannelC2f module to enhance small object detection performance, demonstrating that high-dimensional representations can effectively mitigate information loss. 3) We design the GatedFFN module to provide not only strong performance but also low latency, effectively addressing the challenges of real-time detection. Our research reveals that GatedFFN, through the use of multiplication, is more cost-effective than feed-forward networks for high-dimensional representation. 4) We propose the CED module, which combines the advantages of ViT and CNN downsampling to effectively reduce information loss. It specifically enhances context information for small and dense objects. Extensive experiments on large UAV datasets, Visdrone and UAVDT, validate the real-time efficiency and superior performance of our methods. On the challenging UAV dataset VisDrone, our methods not only provided state-of-the-art results, improving detection by more than 3.4%, but also achieve 110 FPS on a single 4090.Codes are available at (this URL)(https://github.com/HZAI-ZJNU/RemDet).
Abstract:Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
Abstract:Video-to-music generation presents significant potential in video production, requiring the generated music to be both semantically and rhythmically aligned with the video. Achieving this alignment demands advanced music generation capabilities, sophisticated video understanding, and an efficient mechanism to learn the correspondence between the two modalities. In this paper, we propose VidMusician, a parameter-efficient video-to-music generation framework built upon text-to-music models. VidMusician leverages hierarchical visual features to ensure semantic and rhythmic alignment between video and music. Specifically, our approach utilizes global visual features as semantic conditions and local visual features as rhythmic cues. These features are integrated into the generative backbone via cross-attention and in-attention mechanisms, respectively. Through a two-stage training process, we incrementally incorporate semantic and rhythmic features, utilizing zero initialization and identity initialization to maintain the inherent music-generative capabilities of the backbone. Additionally, we construct a diverse video-music dataset, DVMSet, encompassing various scenarios, such as promo videos, commercials, and compilations. Experiments demonstrate that VidMusician outperforms state-of-the-art methods across multiple evaluation metrics and exhibits robust performance on AI-generated videos. Samples are available at \url{https://youtu.be/EPOSXwtl1jw}.
Abstract:Accurately modeling multi-class cell topology is crucial in digital pathology, as it provides critical insights into tissue structure and pathology. The synthetic generation of cell topology enables realistic simulations of complex tissue environments, enhances downstream tasks by augmenting training data, aligns more closely with pathologists' domain knowledge, and offers new opportunities for controlling and generalizing the tumor microenvironment. In this paper, we propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies. Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks such as cell detection and classification. To assess the topological fidelity of generated layouts, we introduce a new metric, Topological Frechet Distance (TopoFD), which overcomes the limitations of traditional metrics like FID in evaluating topological structure. Experimental results demonstrate the effectiveness of our approach in generating multi-class cell layouts that capture intricate topological relationships.
Abstract:We present Noise Adaptor, a novel method for constructing competitive low-latency spiking neural networks (SNNs) by converting noise-injected, low-bit artificial neural networks (ANNs). This approach builds on existing ANN-to-SNN conversion techniques but offers several key improvements: (1) By injecting noise during quantized ANN training, Noise Adaptor better accounts for the dynamic differences between ANNs and SNNs, significantly enhancing SNN accuracy. (2) Unlike previous methods, Noise Adaptor does not require the application of run-time noise correction techniques in SNNs, thereby avoiding modifications to the spiking neuron model and control flow during inference. (3) Our method extends the capability of handling deeper architectures, achieving successful conversions of activation-quantized ResNet-101 and ResNet-152 to SNNs. We demonstrate the effectiveness of our method on CIFAR-10 and ImageNet, achieving competitive performance. The code will be made available as open-source.
Abstract:Analog in-memory computing (AIMC) has emerged as a promising solution to overcome the von Neumann bottleneck, accelerating neural network computations and improving computational efficiency. While AIMC has demonstrated success with architectures such as CNNs, MLPs, and RNNs, deploying transformer-based models using AIMC presents unique challenges. Transformers are expected to handle diverse downstream tasks and adapt to new user data or instructions after deployment, which requires more flexible approaches to suit AIMC constraints. In this paper, we propose a novel method for deploying pre-trained transformer models onto AIMC hardware. Unlike traditional approaches requiring hardware-aware training, our technique allows direct deployment without the need for retraining the original model. Instead, we utilize lightweight, low-rank adapters -- compact modules stored in digital cores -- to adapt the model to hardware constraints. We validate our approach on MobileBERT, demonstrating accuracy on par with, or even exceeding, a traditional hardware-aware training approach. Our method is particularly appealing in multi-task scenarios, as it enables a single analog model to be reused across multiple tasks. Moreover, it supports on-chip adaptation to new hardware constraints and tasks without updating analog weights, providing a flexible and versatile solution for real-world AI applications. Code is available.
Abstract:Human motion generation plays a vital role in applications such as digital humans and humanoid robot control. However, most existing approaches disregard physics constraints, leading to the frequent production of physically implausible motions with pronounced artifacts such as floating and foot sliding. In this paper, we propose \textbf{Morph}, a \textbf{Mo}tion-f\textbf{r}ee \textbf{ph}ysics optimization framework, comprising a Motion Generator and a Motion Physics Refinement module, for enhancing physical plausibility without relying on costly real-world motion data. Specifically, the Motion Generator is responsible for providing large-scale synthetic motion data, while the Motion Physics Refinement Module utilizes these synthetic data to train a motion imitator within a physics simulator, enforcing physical constraints to project the noisy motions into a physically-plausible space. These physically refined motions, in turn, are used to fine-tune the Motion Generator, further enhancing its capability. Experiments on both text-to-motion and music-to-dance generation tasks demonstrate that our framework achieves state-of-the-art motion generation quality while improving physical plausibility drastically.