Abstract:This paper explores methods for extracting information from radiology reports that generalize across exam modalities to reduce requirements for annotated data. We demonstrate that multi-pass T5-based text-to-text generative models exhibit better generalization across exam modalities compared to approaches that employ BERT-based task-specific classification layers. We then develop methods that reduce the inference cost of the model, making large-scale corpus processing more feasible for clinical applications. Specifically, we introduce a generative technique that decomposes complex tasks into smaller subtask blocks, which improves a single-pass model when combined with multitask training. In addition, we leverage target-domain contexts during inference to enhance domain adaptation, enabling use of smaller models. Analyses offer insights into the benefits of different cost reduction strategies.
Abstract:Symptom information is primarily documented in free-text clinical notes and is not directly accessible for downstream applications. To address this challenge, information extraction approaches that can handle clinical language variation across different institutions and specialties are needed. In this paper, we present domain generalization for symptom extraction using pretraining and fine-tuning data that differs from the target domain in terms of institution and/or specialty and patient population. We extract symptom events using a transformer-based joint entity and relation extraction method. To reduce reliance on domain-specific features, we propose a domain generalization method that dynamically masks frequent symptoms words in the source domain. Additionally, we pretrain the transformer language model (LM) on task-related unlabeled texts for better representation. Our experiments indicate that masking and adaptive pretraining methods can significantly improve performance when the source domain is more distant from the target domain.
Abstract:This paper presents a transfer learning method in speech emotion recognition based on a Time-Delay Neural Network (TDNN) architecture. A major challenge in the current speech-based emotion detection research is data scarcity. The proposed method resolves this problem by applying transfer learning techniques in order to leverage data from the automatic speech recognition (ASR) task for which ample data is available. Our experiments also show the advantage of speaker-class adaptation modeling techniques by adopting identity-vector (i-vector) based features in addition to standard Mel-Frequency Cepstral Coefficient (MFCC) features.[1] We show the transfer learning models significantly outperform the other methods without pretraining on ASR. The experiments performed on the publicly available IEMOCAP dataset which provides 12 hours of motional speech data. The transfer learning was initialized by using the Ted-Lium v.2 speech dataset providing 207 hours of audio with the corresponding transcripts. We achieve the highest significantly higher accuracy when compared to state-of-the-art, using five-fold cross validation. Using only speech, we obtain an accuracy 71.7% for anger, excitement, sadness, and neutrality emotion content.