Abstract:Knowledge Graph (KG) is playing an increasingly important role in various AI systems. For e-commerce, an efficient and low-cost automated knowledge graph construction method is the foundation of enabling various successful downstream applications. In this paper, we propose a novel method for constructing structured product knowledge graphs from raw product images. The method cooperatively leverages recent advances in the vision-language model (VLM) and large language model (LLM), fully automating the process and allowing timely graph updates. We also present a human-annotated e-commerce product dataset for benchmarking product property extraction in knowledge graph construction. Our method outperforms our baseline in all metrics and evaluated properties, demonstrating its effectiveness and bright usage potential.
Abstract:This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Abstract:Open-vocabulary object detection (OVD) requires solid modeling of the region-semantic relationship, which could be learned from massive region-text pairs. However, such data is limited in practice due to significant annotation costs. In this work, we propose RTGen to generate scalable open-vocabulary region-text pairs and demonstrate its capability to boost the performance of open-vocabulary object detection. RTGen includes both text-to-region and region-to-text generation processes on scalable image-caption data. The text-to-region generation is powered by image inpainting, directed by our proposed scene-aware inpainting guider for overall layout harmony. For region-to-text generation, we perform multiple region-level image captioning with various prompts and select the best matching text according to CLIP similarity. To facilitate detection training on region-text pairs, we also introduce a localization-aware region-text contrastive loss that learns object proposals tailored with different localization qualities. Extensive experiments demonstrate that our RTGen can serve as a scalable, semantically rich, and effective source for open-vocabulary object detection and continue to improve the model performance when more data is utilized, delivering superior performance compared to the existing state-of-the-art methods.
Abstract:Diffusion models, which employ stochastic differential equations to sample images through integrals, have emerged as a dominant class of generative models. However, the rationality of the diffusion process itself receives limited attention, leaving the question of whether the problem is well-posed and well-conditioned. In this paper, we uncover a vexing propensity of diffusion models: they frequently exhibit the infinite Lipschitz near the zero point of timesteps. This poses a threat to the stability and accuracy of the diffusion process, which relies on integral operations. We provide a comprehensive evaluation of the issue from both theoretical and empirical perspectives. To address this challenge, we propose a novel approach, dubbed E-TSDM, which eliminates the Lipschitz singularity of the diffusion model near zero. Remarkably, our technique yields a substantial improvement in performance, e.g., on the high-resolution FFHQ dataset ($256\times256$). Moreover, as a byproduct of our method, we manage to achieve a dramatic reduction in the Frechet Inception Distance of other acceleration methods relying on network Lipschitz, including DDIM and DPM-Solver, by over 33$\%$. We conduct extensive experiments on diverse datasets to validate our theory and method. Our work not only advances the understanding of the general diffusion process, but also provides insights for the design of diffusion models.
Abstract:Diffusion models, which learn to reverse a signal destruction process to generate new data, typically require the signal at each step to have the same dimension. We argue that, considering the spatial redundancy in image signals, there is no need to maintain a high dimensionality in the evolution process, especially in the early generation phase. To this end, we make a theoretical generalization of the forward diffusion process via signal decomposition. Concretely, we manage to decompose an image into multiple orthogonal components and control the attenuation of each component when perturbing the image. That way, along with the noise strength increasing, we are able to diminish those inconsequential components and thus use a lower-dimensional signal to represent the source, barely losing information. Such a reformulation allows to vary dimensions in both training and inference of diffusion models. Extensive experiments on a range of datasets suggest that our approach substantially reduces the computational cost and achieves on-par or even better synthesis performance compared to baseline methods. We also show that our strategy facilitates high-resolution image synthesis and improves FID of diffusion model trained on FFHQ at $1024\times1024$ resolution from 52.40 to 10.46. Code and models will be made publicly available.