Abstract:3D line mapping from multi-view RGB images provides a compact and structured visual representation of scenes. We study the problem from a physical and topological perspective: a 3D line most naturally emerges as the edge of a finite 3D planar patch. We present LiP-Map, a line-plane joint optimization framework that explicitly models learnable line and planar primitives. This coupling enables accurate and detailed 3D line mapping while maintaining strong efficiency (typically completing a reconstruction in 3 to 5 minutes per scene). LiP-Map pioneers the integration of planar topology into 3D line mapping, not by imposing pairwise coplanarity constraints but by explicitly constructing interactions between plane and line primitives, thus offering a principled route toward structured reconstruction in man-made environments. On more than 100 scenes from ScanNetV2, ScanNet++, Hypersim, 7Scenes, and Tanks\&Temple, LiP-Map improves both accuracy and completeness over state-of-the-art methods. Beyond line mapping quality, LiP-Map significantly advances line-assisted visual localization, establishing strong performance on 7Scenes. Our code is released at https://github.com/calmke/LiPMAP for reproducible research.
Abstract:This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
Abstract:We present LingBot-World, an open-sourced world simulator stemming from video generation. Positioned as a top-tier world model, LingBot-World offers the following features. (1) It maintains high fidelity and robust dynamics in a broad spectrum of environments, including realism, scientific contexts, cartoon styles, and beyond. (2) It enables a minute-level horizon while preserving contextual consistency over time, which is also known as "long-term memory". (3) It supports real-time interactivity, achieving a latency of under 1 second when producing 16 frames per second. We provide public access to the code and model in an effort to narrow the divide between open-source and closed-source technologies. We believe our release will empower the community with practical applications across areas like content creation, gaming, and robot learning.
Abstract:Offering great potential in robotic manipulation, a capable Vision-Language-Action (VLA) foundation model is expected to faithfully generalize across tasks and platforms while ensuring cost efficiency (e.g., data and GPU hours required for adaptation). To this end, we develop LingBot-VLA with around 20,000 hours of real-world data from 9 popular dual-arm robot configurations. Through a systematic assessment on 3 robotic platforms, each completing 100 tasks with 130 post-training episodes per task, our model achieves clear superiority over competitors, showcasing its strong performance and broad generalizability. We have also built an efficient codebase, which delivers a throughput of 261 samples per second per GPU with an 8-GPU training setup, representing a 1.5~2.8$\times$ (depending on the relied VLM base model) speedup over existing VLA-oriented codebases. The above features ensure that our model is well-suited for real-world deployment. To advance the field of robot learning, we provide open access to the code, base model, and benchmark data, with a focus on enabling more challenging tasks and promoting sound evaluation standards.
Abstract:Spatial visual perception is a fundamental requirement in physical-world applications like autonomous driving and robotic manipulation, driven by the need to interact with 3D environments. Capturing pixel-aligned metric depth using RGB-D cameras would be the most viable way, yet it usually faces obstacles posed by hardware limitations and challenging imaging conditions, especially in the presence of specular or texture-less surfaces. In this work, we argue that the inaccuracies from depth sensors can be viewed as "masked" signals that inherently reflect underlying geometric ambiguities. Building on this motivation, we present LingBot-Depth, a depth completion model which leverages visual context to refine depth maps through masked depth modeling and incorporates an automated data curation pipeline for scalable training. It is encouraging to see that our model outperforms top-tier RGB-D cameras in terms of both depth precision and pixel coverage. Experimental results on a range of downstream tasks further suggest that LingBot-Depth offers an aligned latent representation across RGB and depth modalities. We release the code, checkpoint, and 3M RGB-depth pairs (including 2M real data and 1M simulated data) to the community of spatial perception.
Abstract:Recent advancements in 3D object generation using diffusion models have achieved remarkable success, but generating realistic 3D urban scenes remains challenging. Existing methods relying solely on 3D diffusion models tend to suffer a degradation in appearance details, while those utilizing only 2D diffusion models typically compromise camera controllability. To overcome this limitation, we propose ScenDi, a method for urban scene generation that integrates both 3D and 2D diffusion models. We first train a 3D latent diffusion model to generate 3D Gaussians, enabling the rendering of images at a relatively low resolution. To enable controllable synthesis, this 3DGS generation process can be optionally conditioned by specifying inputs such as 3d bounding boxes, road maps, or text prompts. Then, we train a 2D video diffusion model to enhance appearance details conditioned on rendered images from the 3D Gaussians. By leveraging the coarse 3D scene as guidance for 2D video diffusion, ScenDi generates desired scenes based on input conditions and successfully adheres to accurate camera trajectories. Experiments on two challenging real-world datasets, Waymo and KITTI-360, demonstrate the effectiveness of our approach.
Abstract:Character image animation is gaining significant importance across various domains, driven by the demand for robust and flexible multi-subject rendering. While existing methods excel in single-person animation, they struggle to handle arbitrary subject counts, diverse character types, and spatial misalignment between the reference image and the driving poses. We attribute these limitations to an overly rigid spatial binding that forces strict pixel-wise alignment between the pose and reference, and an inability to consistently rebind motion to intended subjects. To address these challenges, we propose CoDance, a novel Unbind-Rebind framework that enables the animation of arbitrary subject counts, types, and spatial configurations conditioned on a single, potentially misaligned pose sequence. Specifically, the Unbind module employs a novel pose shift encoder to break the rigid spatial binding between the pose and the reference by introducing stochastic perturbations to both poses and their latent features, thereby compelling the model to learn a location-agnostic motion representation. To ensure precise control and subject association, we then devise a Rebind module, leveraging semantic guidance from text prompts and spatial guidance from subject masks to direct the learned motion to intended characters. Furthermore, to facilitate comprehensive evaluation, we introduce a new multi-subject CoDanceBench. Extensive experiments on CoDanceBench and existing datasets show that CoDance achieves SOTA performance, exhibiting remarkable generalization across diverse subjects and spatial layouts. The code and weights will be open-sourced.
Abstract:Physical principles are fundamental to realistic visual simulation, but remain a significant oversight in transformer-based video generation. This gap highlights a critical limitation in rendering rigid body motion, a core tenet of classical mechanics. While computer graphics and physics-based simulators can easily model such collisions using Newton formulas, modern pretrain-finetune paradigms discard the concept of object rigidity during pixel-level global denoising. Even perfectly correct mathematical constraints are treated as suboptimal solutions (i.e., conditions) during model optimization in post-training, fundamentally limiting the physical realism of generated videos. Motivated by these considerations, we introduce, for the first time, a physics-aware reinforcement learning paradigm for video generation models that enforces physical collision rules directly in high-dimensional spaces, ensuring the physics knowledge is strictly applied rather than treated as conditions. Subsequently, we extend this paradigm to a unified framework, termed Mimicry-Discovery Cycle (MDcycle), which allows substantial fine-tuning while fully preserving the model's ability to leverage physics-grounded feedback. To validate our approach, we construct new benchmark PhysRVGBench and perform extensive qualitative and quantitative experiments to thoroughly assess its effectiveness.
Abstract:We present UIKA, a feed-forward animatable Gaussian head model from an arbitrary number of unposed inputs, including a single image, multi-view captures, and smartphone-captured videos. Unlike the traditional avatar method, which requires a studio-level multi-view capture system and reconstructs a human-specific model through a long-time optimization process, we rethink the task through the lenses of model representation, network design, and data preparation. First, we introduce a UV-guided avatar modeling strategy, in which each input image is associated with a pixel-wise facial correspondence estimation. Such correspondence estimation allows us to reproject each valid pixel color from screen space to UV space, which is independent of camera pose and character expression. Furthermore, we design learnable UV tokens on which the attention mechanism can be applied at both the screen and UV levels. The learned UV tokens can be decoded into canonical Gaussian attributes using aggregated UV information from all input views. To train our large avatar model, we additionally prepare a large-scale, identity-rich synthetic training dataset. Our method significantly outperforms existing approaches in both monocular and multi-view settings. Project page: https://zijian-wu.github.io/uika-page/




Abstract:We present WorldCanvas, a framework for promptable world events that enables rich, user-directed simulation by combining text, trajectories, and reference images. Unlike text-only approaches and existing trajectory-controlled image-to-video methods, our multimodal approach combines trajectories -- encoding motion, timing, and visibility -- with natural language for semantic intent and reference images for visual grounding of object identity, enabling the generation of coherent, controllable events that include multi-agent interactions, object entry/exit, reference-guided appearance and counterintuitive events. The resulting videos demonstrate not only temporal coherence but also emergent consistency, preserving object identity and scene despite temporary disappearance. By supporting expressive world events generation, WorldCanvas advances world models from passive predictors to interactive, user-shaped simulators. Our project page is available at: https://worldcanvas.github.io/.