Abstract:Cloth-Changing Person Re-Identification (CC-ReID) is a common and realistic problem since fashion constantly changes over time and people's aesthetic preferences are not set in stone. While most existing cloth-changing ReID methods focus on learning cloth-agnostic identity representations from coarse semantic cues (e.g. silhouettes and part segmentation maps), they neglect the continuous shape distributions at the pixel level. In this paper, we propose Continuous Surface Correspondence Learning (CSCL), a new shape embedding paradigm for cloth-changing ReID. CSCL establishes continuous correspondences between a 2D image plane and a canonical 3D body surface via pixel-to-vertex classification, which naturally aligns a person image to the surface of a 3D human model and simultaneously obtains pixel-wise surface embeddings. We further extract fine-grained shape features from the learned surface embeddings and then integrate them with global RGB features via a carefully designed cross-modality fusion module. The shape embedding paradigm based on 2D-3D correspondences remarkably enhances the model's global understanding of human body shape. To promote the study of ReID under clothing change, we construct 3D Dense Persons (DP3D), which is the first large-scale cloth-changing ReID dataset that provides densely annotated 2D-3D correspondences and a precise 3D mesh for each person image, while containing diverse cloth-changing cases over all four seasons. Experiments on both cloth-changing and cloth-consistent ReID benchmarks validate the effectiveness of our method.
Abstract:Training perception systems for self-driving cars requires substantial annotations. However, manual labeling in 2D images is highly labor-intensive. While existing datasets provide rich annotations for pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate consistent panoptic labels and high-quality images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage noisy semantic and instance labels in both 3D and 2D spaces to guide geometry optimization. Simultaneously, the improved geometry assists in filtering noise present in the 3D and 2D annotations by merging them in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and predominantly contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over existing label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRF
Abstract:Large-scale training data with high-quality annotations is critical for training semantic and instance segmentation models. Unfortunately, pixel-wise annotation is labor-intensive and costly, raising the demand for more efficient labeling strategies. In this work, we present a novel 3D-to-2D label transfer method, Panoptic NeRF, which aims for obtaining per-pixel 2D semantic and instance labels from easy-to-obtain coarse 3D bounding primitives. Our method utilizes NeRF as a differentiable tool to unify coarse 3D annotations and 2D semantic cues transferred from existing datasets. We demonstrate that this combination allows for improved geometry guided by semantic information, enabling rendering of accurate semantic maps across multiple views. Furthermore, this fusion process resolves label ambiguity of the coarse 3D annotations and filters noise in the 2D predictions. By inferring in 3D space and rendering to 2D labels, our 2D semantic and instance labels are multi-view consistent by design. Experimental results show that Panoptic NeRF outperforms existing semantic and instance label transfer methods in terms of accuracy and multi-view consistency on challenging urban scenes of the KITTI-360 dataset.