Abstract:Adversarial attacks, which manipulate input data to undermine model availability and integrity, pose significant security threats during machine learning inference. With the advent of Large Vision-Language Models (LVLMs), new attack vectors, such as cognitive bias, prompt injection, and jailbreak techniques, have emerged. Understanding these attacks is crucial for developing more robust systems and demystifying the inner workings of neural networks. However, existing reviews often focus on attack classifications and lack comprehensive, in-depth analysis. The research community currently needs: 1) unified insights into adversariality, transferability, and generalization; 2) detailed evaluations of existing methods; 3) motivation-driven attack categorizations; and 4) an integrated perspective on both traditional and LVLM attacks. This article addresses these gaps by offering a thorough summary of traditional and LVLM adversarial attacks, emphasizing their connections and distinctions, and providing actionable insights for future research.
Abstract:Current Transferable Adversarial Examples (TAE) are primarily generated by adding Adversarial Noise (AN). Recent studies emphasize the importance of optimizing Data Augmentation (DA) parameters along with AN, which poses a greater threat to real-world AI applications. However, existing DA-based strategies often struggle to find optimal solutions due to the challenging DA search procedure without proper guidance. In this work, we propose a novel DA-based attack algorithm, GADT. GADT identifies suitable DA parameters through iterative antagonism and uses posterior estimates to update AN based on these parameters. We uniquely employ a differentiable DA operation library to identify adversarial DA parameters and introduce a new loss function as a metric during DA optimization. This loss term enhances adversarial effects while preserving the original image content, maintaining attack crypticity. Extensive experiments on public datasets with various networks demonstrate that GADT can be integrated with existing transferable attack methods, updating their DA parameters effectively while retaining their AN formulation strategies. Furthermore, GADT can be utilized in other black-box attack scenarios, e.g., query-based attacks, offering a new avenue to enhance attacks on real-world AI applications in both research and industrial contexts.
Abstract:The development of Large Language Models (LLMs) has significantly advanced various AI applications in commercial and scientific research fields, such as scientific literature summarization, writing assistance, and knowledge graph construction. However, a significant challenge is the high risk of hallucination during LLM inference, which can lead to security concerns like factual inaccuracies, inconsistent information, and fabricated content. To tackle this issue, it is essential to develop effective methods for reducing hallucination while maintaining the original capabilities of the LLM. This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination. This method modifies the representation layers of pre-trained LLMs by using contrastive `positive' and `negative' models, trained on data with and without hallucinations. By leveraging the differences between these two models, we create a more straightforward pathway to eliminate hallucinations, and the iterative nature of contrastive learning further enhances performance. Experimental validation on four pre-trained foundation LLMs (LLaMA2, Alpaca, LLaMA3, and Qwen) finetuning with a specially designed dataset shows that our approach achieves an average improvement of 10.1 points on the TruthfulQA benchmark. Comprehensive experiments demonstrate the effectiveness of Iter-AHMCL in reducing hallucination while maintaining the general capabilities of LLMs.
Abstract:Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks. However, these models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images. Many existing work detects hallucination by directly judging whether an object exists in an image, overlooking the association between the object and semantics. To address this issue, we propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD). This framework incorporates hallucination feedback at both object and sentence semantic levels. Remarkably, even with a marginal degree of training, this approach can alleviate over 15% of hallucination. Simultaneously, HELPD penalizes the output logits according to the image attention window to avoid being overly affected by generated text. HELPD can be seamlessly integrated with any LVLMs. Our experiments demonstrate that the proposed framework yields favorable results across multiple hallucination benchmarks. It effectively mitigates hallucination for different LVLMs and concurrently improves their text generation quality.
Abstract:Previous low-light image enhancement (LLIE) approaches, while employing frequency decomposition techniques to address the intertwined challenges of low frequency (e.g., illumination recovery) and high frequency (e.g., noise reduction), primarily focused on the development of dedicated and complex networks to achieve improved performance. In contrast, we reveal that an advanced disentanglement paradigm is sufficient to consistently enhance state-of-the-art methods with minimal computational overhead. Leveraging the image Laplace decomposition scheme, we propose a novel low-frequency consistency method, facilitating improved frequency disentanglement optimization. Our method, seamlessly integrating with various models such as CNNs, Transformers, and flow-based and diffusion models, demonstrates remarkable adaptability. Noteworthy improvements are showcased across five popular benchmarks, with up to 7.68dB gains on PSNR achieved for six state-of-the-art models. Impressively, our approach maintains efficiency with only 88K extra parameters, setting a new standard in the challenging realm of low-light image enhancement.
Abstract:Capturing High Dynamic Range (HDR) scenery using 8-bit cameras often suffers from over-/underexposure, loss of fine details due to low bit-depth compression, skewed color distributions, and strong noise in dark areas. Traditional LDR image enhancement methods primarily focus on color mapping, which enhances the visual representation by expanding the image's color range and adjusting the brightness. However, these approaches fail to effectively restore content in dynamic range extremes, which are regions with pixel values close to 0 or 255. To address the full scope of challenges in HDR imaging and surpass the limitations of current models, we propose a novel two-stage approach. The first stage maps the color and brightness to an appropriate range while keeping the existing details, and the second stage utilizes a diffusion prior to generate content in dynamic range extremes lost during capture. This generative refinement module can also be used as a plug-and-play module to enhance and complement existing LDR enhancement models. The proposed method markedly improves the quality and details of LDR images, demonstrating superior performance through rigorous experimental validation. The project page is at https://sagiri0208.github.io
Abstract:This work presents Depth Anything V2. Without pursuing fancy techniques, we aim to reveal crucial findings to pave the way towards building a powerful monocular depth estimation model. Notably, compared with V1, this version produces much finer and more robust depth predictions through three key practices: 1) replacing all labeled real images with synthetic images, 2) scaling up the capacity of our teacher model, and 3) teaching student models via the bridge of large-scale pseudo-labeled real images. Compared with the latest models built on Stable Diffusion, our models are significantly more efficient (more than 10x faster) and more accurate. We offer models of different scales (ranging from 25M to 1.3B params) to support extensive scenarios. Benefiting from their strong generalization capability, we fine-tune them with metric depth labels to obtain our metric depth models. In addition to our models, considering the limited diversity and frequent noise in current test sets, we construct a versatile evaluation benchmark with precise annotations and diverse scenes to facilitate future research.
Abstract:Recently, large-scale language-image generative models have gained widespread attention and many works have utilized generated data from these models to further enhance the performance of perception tasks. However, not all generated data can positively impact downstream models, and these methods do not thoroughly explore how to better select and utilize generated data. On the other hand, there is still a lack of research oriented towards active learning on generated data. In this paper, we explore how to perform active learning specifically for generated data in the long-tailed instance segmentation task. Subsequently, we propose BSGAL, a new algorithm that online estimates the contribution of the generated data based on gradient cache. BSGAL can handle unlimited generated data and complex downstream segmentation tasks effectively. Experiments show that BSGAL outperforms the baseline approach and effectually improves the performance of long-tailed segmentation. Our code can be found at https://github.com/aim-uofa/DiverGen.
Abstract:Due to the need to interact with the real world, embodied agents are required to possess comprehensive prior knowledge, long-horizon planning capability, and a swift response speed. Despite recent large language model (LLM) based agents achieving promising performance, they still exhibit several limitations. For instance, the output of LLMs is a descriptive sentence, which is ambiguous when determining specific actions. To address these limitations, we introduce the large auto-regressive model (LARM). LARM leverages both text and multi-view images as input and predicts subsequent actions in an auto-regressive manner. To train LARM, we develop a novel data format named auto-regressive node transmission structure and assemble a corresponding dataset. Adopting a two-phase training regimen, LARM successfully harvests enchanted equipment in Minecraft, which demands significantly more complex decision-making chains than the highest achievements of prior best methods. Besides, the speed of LARM is 6.8x faster.
Abstract:Video Anomaly Detection (VAD) systems can autonomously monitor and identify disturbances, reducing the need for manual labor and associated costs. However, current VAD systems are often limited by their superficial semantic understanding of scenes and minimal user interaction. Additionally, the prevalent data scarcity in existing datasets restricts their applicability in open-world scenarios. In this paper, we introduce Hawk, a novel framework that leverages interactive large Visual Language Models (VLM) to interpret video anomalies precisely. Recognizing the difference in motion information between abnormal and normal videos, Hawk explicitly integrates motion modality to enhance anomaly identification. To reinforce motion attention, we construct an auxiliary consistency loss within the motion and video space, guiding the video branch to focus on the motion modality. Moreover, to improve the interpretation of motion-to-language, we establish a clear supervisory relationship between motion and its linguistic representation. Furthermore, we have annotated over 8,000 anomaly videos with language descriptions, enabling effective training across diverse open-world scenarios, and also created 8,000 question-answering pairs for users' open-world questions. The final results demonstrate that Hawk achieves SOTA performance, surpassing existing baselines in both video description generation and question-answering. Our codes/dataset/demo will be released at https://github.com/jqtangust/hawk.