Abstract:Visual Commonsense Reasoning, which is regarded as one challenging task to pursue advanced visual scene comprehension, has been used to diagnose the reasoning ability of AI systems. However, reliable reasoning requires a good grasp of the scene's details. Existing work fails to effectively exploit the real-world object relationship information present within the scene, and instead overly relies on knowledge from training memory. Based on these observations, we propose a novel scene-graph-enhanced visual commonsense reasoning generation method named \textit{\textbf{G2}}, which first utilizes the image patches and LLMs to construct a location-free scene graph, and then answer and explain based on the scene graph's information. We also propose automatic scene graph filtering and selection strategies to absorb valuable scene graph information during training. Extensive experiments are conducted on the tasks and datasets of scene graph constructing and visual commonsense answering and explaining, respectively. Experimental results and ablation analysis demonstrate the effectiveness of our proposed framework.
Abstract:The emergence of the Large Language Model (LLM) has shown their superiority in a wide range of disciplines, including language understanding and translation, relational logic reasoning, and even partial differential equations solving. The transformer is the pervasive backbone architecture for the foundation model construction. It is vital to research how to adjust the Transformer architecture to achieve an end-to-end privacy guarantee in LLM fine-tuning. In this paper, we investigate three potential information leakage during a federated fine-tuning procedure for LLM (FedLLM). Based on the potential information leakage, we provide an end-to-end privacy guarantee solution for FedLLM by inserting two-stage randomness. The first stage is to train a gradient auto-encoder with a Gaussian random prior based on the statistical information of the gradients generated by local clients. The second stage is to fine-tune the overall LLM with a differential privacy guarantee by adopting appropriate Gaussian noises. We show the efficiency and accuracy gains of our proposed method with several foundation models and two popular evaluation benchmarks. Furthermore, we present a comprehensive privacy analysis with Gaussian Differential Privacy (GDP) and Renyi Differential Privacy (RDP).
Abstract:We present FashionComposer for compositional fashion image generation. Unlike previous methods, FashionComposer is highly flexible. It takes multi-modal input (i.e., text prompt, parametric human model, garment image, and face image) and supports personalizing the appearance, pose, and figure of the human and assigning multiple garments in one pass. To achieve this, we first develop a universal framework capable of handling diverse input modalities. We construct scaled training data to enhance the model's robust compositional capabilities. To accommodate multiple reference images (garments and faces) seamlessly, we organize these references in a single image as an "asset library" and employ a reference UNet to extract appearance features. To inject the appearance features into the correct pixels in the generated result, we propose subject-binding attention. It binds the appearance features from different "assets" with the corresponding text features. In this way, the model could understand each asset according to their semantics, supporting arbitrary numbers and types of reference images. As a comprehensive solution, FashionComposer also supports many other applications like human album generation, diverse virtual try-on tasks, etc.
Abstract:Human video synthesis aims to create lifelike characters in various environments, with wide applications in VR, storytelling, and content creation. While 2D diffusion-based methods have made significant progress, they struggle to generalize to complex 3D poses and varying scene backgrounds. To address these limitations, we introduce CFSynthesis, a novel framework for generating high-quality human videos with customizable attributes, including identity, motion, and scene configurations. Our method leverages a texture-SMPL-based representation to ensure consistent and stable character appearances across free viewpoints. Additionally, we introduce a novel foreground-background separation strategy that effectively decomposes the scene as foreground and background, enabling seamless integration of user-defined backgrounds. Experimental results on multiple datasets show that CFSynthesis not only achieves state-of-the-art performance in complex human animations but also adapts effectively to 3D motions in free-view and user-specified scenarios.
Abstract:Adversarial attacks, which manipulate input data to undermine model availability and integrity, pose significant security threats during machine learning inference. With the advent of Large Vision-Language Models (LVLMs), new attack vectors, such as cognitive bias, prompt injection, and jailbreak techniques, have emerged. Understanding these attacks is crucial for developing more robust systems and demystifying the inner workings of neural networks. However, existing reviews often focus on attack classifications and lack comprehensive, in-depth analysis. The research community currently needs: 1) unified insights into adversariality, transferability, and generalization; 2) detailed evaluations of existing methods; 3) motivation-driven attack categorizations; and 4) an integrated perspective on both traditional and LVLM attacks. This article addresses these gaps by offering a thorough summary of traditional and LVLM adversarial attacks, emphasizing their connections and distinctions, and providing actionable insights for future research.
Abstract:Current Transferable Adversarial Examples (TAE) are primarily generated by adding Adversarial Noise (AN). Recent studies emphasize the importance of optimizing Data Augmentation (DA) parameters along with AN, which poses a greater threat to real-world AI applications. However, existing DA-based strategies often struggle to find optimal solutions due to the challenging DA search procedure without proper guidance. In this work, we propose a novel DA-based attack algorithm, GADT. GADT identifies suitable DA parameters through iterative antagonism and uses posterior estimates to update AN based on these parameters. We uniquely employ a differentiable DA operation library to identify adversarial DA parameters and introduce a new loss function as a metric during DA optimization. This loss term enhances adversarial effects while preserving the original image content, maintaining attack crypticity. Extensive experiments on public datasets with various networks demonstrate that GADT can be integrated with existing transferable attack methods, updating their DA parameters effectively while retaining their AN formulation strategies. Furthermore, GADT can be utilized in other black-box attack scenarios, e.g., query-based attacks, offering a new avenue to enhance attacks on real-world AI applications in both research and industrial contexts.
Abstract:The development of Large Language Models (LLMs) has significantly advanced various AI applications in commercial and scientific research fields, such as scientific literature summarization, writing assistance, and knowledge graph construction. However, a significant challenge is the high risk of hallucination during LLM inference, which can lead to security concerns like factual inaccuracies, inconsistent information, and fabricated content. To tackle this issue, it is essential to develop effective methods for reducing hallucination while maintaining the original capabilities of the LLM. This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination. This method modifies the representation layers of pre-trained LLMs by using contrastive `positive' and `negative' models, trained on data with and without hallucinations. By leveraging the differences between these two models, we create a more straightforward pathway to eliminate hallucinations, and the iterative nature of contrastive learning further enhances performance. Experimental validation on four pre-trained foundation LLMs (LLaMA2, Alpaca, LLaMA3, and Qwen) finetuning with a specially designed dataset shows that our approach achieves an average improvement of 10.1 points on the TruthfulQA benchmark. Comprehensive experiments demonstrate the effectiveness of Iter-AHMCL in reducing hallucination while maintaining the general capabilities of LLMs.
Abstract:Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks. However, these models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images. Many existing work detects hallucination by directly judging whether an object exists in an image, overlooking the association between the object and semantics. To address this issue, we propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD). This framework incorporates hallucination feedback at both object and sentence semantic levels. Remarkably, even with a marginal degree of training, this approach can alleviate over 15% of hallucination. Simultaneously, HELPD penalizes the output logits according to the image attention window to avoid being overly affected by generated text. HELPD can be seamlessly integrated with any LVLMs. Our experiments demonstrate that the proposed framework yields favorable results across multiple hallucination benchmarks. It effectively mitigates hallucination for different LVLMs and concurrently improves their text generation quality.
Abstract:Previous low-light image enhancement (LLIE) approaches, while employing frequency decomposition techniques to address the intertwined challenges of low frequency (e.g., illumination recovery) and high frequency (e.g., noise reduction), primarily focused on the development of dedicated and complex networks to achieve improved performance. In contrast, we reveal that an advanced disentanglement paradigm is sufficient to consistently enhance state-of-the-art methods with minimal computational overhead. Leveraging the image Laplace decomposition scheme, we propose a novel low-frequency consistency method, facilitating improved frequency disentanglement optimization. Our method, seamlessly integrating with various models such as CNNs, Transformers, and flow-based and diffusion models, demonstrates remarkable adaptability. Noteworthy improvements are showcased across five popular benchmarks, with up to 7.68dB gains on PSNR achieved for six state-of-the-art models. Impressively, our approach maintains efficiency with only 88K extra parameters, setting a new standard in the challenging realm of low-light image enhancement.
Abstract:This work presents Depth Anything V2. Without pursuing fancy techniques, we aim to reveal crucial findings to pave the way towards building a powerful monocular depth estimation model. Notably, compared with V1, this version produces much finer and more robust depth predictions through three key practices: 1) replacing all labeled real images with synthetic images, 2) scaling up the capacity of our teacher model, and 3) teaching student models via the bridge of large-scale pseudo-labeled real images. Compared with the latest models built on Stable Diffusion, our models are significantly more efficient (more than 10x faster) and more accurate. We offer models of different scales (ranging from 25M to 1.3B params) to support extensive scenarios. Benefiting from their strong generalization capability, we fine-tune them with metric depth labels to obtain our metric depth models. In addition to our models, considering the limited diversity and frequent noise in current test sets, we construct a versatile evaluation benchmark with precise annotations and diverse scenes to facilitate future research.