Abstract:Large language models (LLMs) exhibit varying strengths and weaknesses across different tasks, prompting recent studies to explore the benefits of ensembling models to leverage their complementary advantages. However, existing LLM ensembling methods often overlook model compatibility and struggle with inefficient alignment of probabilities across the entire vocabulary. In this study, we empirically investigate the factors influencing ensemble performance, identifying model performance, vocabulary size, and response style as key determinants, revealing that compatibility among models is essential for effective ensembling. This analysis leads to the development of a simple yet effective model selection strategy that identifies compatible models. Additionally, we introduce the \textsc{Uni}on \textsc{T}op-$k$ \textsc{E}nsembling (\textsc{UniTE}), a novel approach that efficiently combines models by focusing on the union of the top-k tokens from each model, thereby avoiding the need for full vocabulary alignment and reducing computational overhead. Extensive evaluations across multiple benchmarks demonstrate that \textsc{UniTE} significantly enhances performance compared to existing methods, offering a more efficient framework for LLM ensembling.
Abstract:Deductive coding is a common discourse analysis method widely used by learning science and learning analytics researchers for understanding teaching and learning interactions. It often requires researchers to manually label all discourses to be analyzed according to a theoretically guided coding scheme, which is time-consuming and labor-intensive. The emergence of large language models such as GPT has opened a new avenue for automatic deductive coding to overcome the limitations of traditional deductive coding. To evaluate the usefulness of large language models in automatic deductive coding, we employed three different classification methods driven by different artificial intelligence technologies, including the traditional text classification method with text feature engineering, BERT-like pretrained language model and GPT-like pretrained large language model (LLM). We applied these methods to two different datasets and explored the potential of GPT and prompt engineering in automatic deductive coding. By analyzing and comparing the accuracy and Kappa values of these three classification methods, we found that GPT with prompt engineering outperformed the other two methods on both datasets with limited number of training samples. By providing detailed prompt structures, the reported work demonstrated how large language models can be used in the implementation of automatic deductive coding.
Abstract:The deployment of multimodal large language models (MLLMs) has demonstrated remarkable success in engaging in conversations involving visual inputs, thanks to the superior power of large language models (LLMs). Those MLLMs are typically built based on the LLMs, with an image encoder to process images into the token embedding space of the LLMs. However, the integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs and prone to generating sensitive or harmful responses, even though the LLM has been trained on textual dataset to align with human value. In this paper, we first raise the question: ``Do the MLLMs possess safety-awareness against malicious image inputs?". We find that after adding a principle that specifies the safety requirement into the input of the MLLM, the model's safety awareness becomes boosted. This phenomenon verifies the existence of MLLM's safety-awareness against image inputs, it is only weakened by the modality gap. We then introduce a simple yet effective technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution. Our proposed strategy helps the model reclaim its original safety awareness without losing its original capabilities. We verify the effectiveness of our approach on both multimodal safety and understanding benchmarks.
Abstract:Machine Translation (MT) has developed rapidly since the release of Large Language Models and current MT evaluation is performed through comparison with reference human translations or by predicting quality scores from human-labeled data. However, these mainstream evaluation methods mainly focus on fluency and factual reliability, whilst paying little attention to figurative quality. In this paper, we investigate the figurative quality of MT and propose a set of human evaluation metrics focused on the translation of figurative language. We additionally present a multilingual parallel metaphor corpus generated by post-editing. Our evaluation protocol is designed to estimate four aspects of MT: Metaphorical Equivalence, Emotion, Authenticity, and Quality. In doing so, we observe that translations of figurative expressions display different traits from literal ones.
Abstract:Automated cephalometric landmark detection is crucial in real-world orthodontic diagnosis. Current studies mainly focus on only adult subjects, neglecting the clinically crucial scenario presented by adolescents whose landmarks often exhibit significantly different appearances compared to adults. Hence, an open question arises about how to develop a unified and effective detection algorithm across various age groups, including adolescents and adults. In this paper, we propose CeLDA, the first work for Cephalometric Landmark Detection across Ages. Our method leverages a prototypical network for landmark detection by comparing image features with landmark prototypes. To tackle the appearance discrepancy of landmarks between age groups, we design new strategies for CeLDA to improve prototype alignment and obtain a holistic estimation of landmark prototypes from a large set of training images. Moreover, a novel prototype relation mining paradigm is introduced to exploit the anatomical relations between the landmark prototypes. Extensive experiments validate the superiority of CeLDA in detecting cephalometric landmarks on both adult and adolescent subjects. To our knowledge, this is the first effort toward developing a unified solution and dataset for cephalometric landmark detection across age groups. Our code and dataset will be made public on https://github.com/ShanghaiTech-IMPACT/Cephalometric-Landmark-Detection-across-Ages-with-Prototypical-Network
Abstract:Cross-modal transformers have demonstrated superiority in various vision tasks by effectively integrating different modalities. This paper first critiques prior token exchange methods which replace less informative tokens with inter-modal features, and demonstrate exchange based methods underperform cross-attention mechanisms, while the computational demand of the latter inevitably restricts its use with longer sequences. To surmount the computational challenges, we propose GeminiFusion, a pixel-wise fusion approach that capitalizes on aligned cross-modal representations. GeminiFusion elegantly combines intra-modal and inter-modal attentions, dynamically integrating complementary information across modalities. We employ a layer-adaptive noise to adaptively control their interplay on a per-layer basis, thereby achieving a harmonized fusion process. Notably, GeminiFusion maintains linear complexity with respect to the number of input tokens, ensuring this multimodal framework operates with efficiency comparable to unimodal networks. Comprehensive evaluations across multimodal image-to-image translation, 3D object detection and arbitrary-modal semantic segmentation tasks, including RGB, depth, LiDAR, event data, etc. demonstrate the superior performance of our GeminiFusion against leading-edge techniques. The PyTorch code is available at https://github.com/JiaDingCN/GeminiFusion
Abstract:Large language models (LLMs) have demonstrated outstanding performance across various tasks, yet they still exhibit limitations such as hallucination, unfaithful reasoning, and toxic content. One potential approach to mitigate these issues is learning from human or external feedback (e.g. tools). In this paper, we introduce an intrinsic self-correct reasoning framework for LLMs that eliminates the need for human feedback, external tools, and handcraft prompts. The proposed framework, based on a multi-step reasoning paradigm \textbf{Le}arning from \textbf{Co}rrectness (\textsc{LeCo}), improves reasoning performance without needing to learn from errors. This paradigm prioritizes learning from correct reasoning steps, and a unique method to measure confidence for each reasoning step based on generation logits. Experimental results across various multi-step reasoning tasks demonstrate the effectiveness of the framework in improving reasoning performance with reduced token consumption.
Abstract:Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds. Recently, convolutional neural networks have achieved significant advantages in general object detection. With the development of Transformer, the scale of SIRST models is constantly increasing. Due to the limited training samples, performance has not been improved accordingly. The quality, quantity, and diversity of the infrared dataset are critical to the detection of small targets. To highlight this issue, we propose a negative sample augmentation method in this paper. Specifically, a negative augmentation approach is proposed to generate massive negatives for self-supervised learning. Firstly, we perform a sequential noise modeling technology to generate realistic infrared data. Secondly, we fuse the extracted noise with the original data to facilitate diversity and fidelity in the generated data. Lastly, we proposed a negative augmentation strategy to enrich diversity as well as maintain semantic invariance. The proposed algorithm produces a synthetic SIRST-5K dataset, which contains massive pseudo-data and corresponding labels. With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed. Compared with other state-of-the-art (SOTA) methods, our method achieves outstanding performance in terms of probability of detection (Pd), false-alarm rate (Fa), and intersection over union (IoU).
Abstract:In real-world environments, outdoor imaging systems are often affected by disturbances such as rain degradation. Especially, in nighttime driving scenes, insufficient and uneven lighting shrouds the scenes in darkness, resulting degradation of both the image quality and visibility. Particularly, in the field of autonomous driving, the visual perception ability of RGB sensors experiences a sharp decline in such harsh scenarios. Additionally, driving assistance systems suffer from reduced capabilities in capturing and discerning the surrounding environment, posing a threat to driving safety. Single-view information captured by single-modal sensors cannot comprehensively depict the entire scene. To address these challenges, we developed an image de-raining framework tailored for rainy nighttime driving scenes. It aims to remove rain artifacts, enrich scene representation, and restore useful information. Specifically, we introduce cooperative learning between visible and infrared images captured by different sensors. By cross-view fusion of these multi-source data, the scene within the images gains richer texture details and enhanced contrast. We constructed an information cleaning module called CleanNet as the first stage of our framework. Moreover, we designed an information fusion module called FusionNet as the second stage to fuse the clean visible images with infrared images. Using this stage-by-stage learning strategy, we obtain de-rained fusion images with higher quality and better visual perception. Extensive experiments demonstrate the effectiveness of our proposed Cross-View Cooperative Learning (CVCL) in adverse driving scenarios in low-light rainy environments. The proposed approach addresses the gap in the utilization of existing rain removal algorithms in specific low-light conditions.
Abstract:Training general-purpose vision models on purely sequential visual data, eschewing linguistic inputs, has heralded a new frontier in visual understanding. These models are intended to not only comprehend but also seamlessly transit to out-of-domain tasks. However, current endeavors are hamstrung by an over-reliance on colossal models, exemplified by models with upwards of 3B parameters, and the necessity for an extensive corpus of visual data, often comprising a staggering 400B tokens. In this paper, we delve into the development of an efficient, autoregression-based vision model, innovatively architected to operate on a limited dataset. We meticulously demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding during the testing phase. Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint, and a marked decrease in training data requirements, thereby paving the way for more sustainable and accessible advancements in the field of generalist vision models. The code is available at https://github.com/ggjy/DeLVM.