Abstract:It is explored that available credible evidence fusion schemes suffer from the potential inconsistency because credibility calculation and Dempster's combination rule-based fusion are sequentially performed in an open-loop style. This paper constructs evidence credibility from the perspective of the degree of support for events within the framework of discrimination (FOD) and proposes an iterative credible evidence fusion (ICEF) to overcome the inconsistency in view of close-loop control. On one hand, the ICEF introduces the fusion result into credibility assessment to establish the correlation between credibility and the fusion result. On the other hand, arithmetic-geometric divergence is promoted based on the exponential normalization of plausibility and belief functions to measure evidence conflict, called plausibility-belief arithmetic-geometric divergence (PBAGD), which is superior in capturing the correlation and difference of FOD subsets, identifying abnormal sources, and reducing their fusion weights. The ICEF is compared with traditional methods by combining different evidence difference measure forms via numerical examples to verify its performance. Simulations on numerical examples and benchmark datasets reflect the adaptability of PBAGD to the proposed fusion strategy.
Abstract:The theory of evidence reasoning has been applied to collective decision-making in recent years. However, existing distributed evidence fusion methods lead to participants' preference leakage and fusion failures as they directly exchange raw evidence and do not assess evidence credibility like centralized credible evidence fusion (CCEF) does. To do so, a privacy-preserving distributed credible evidence fusion method with three-level consensus (PCEF) is proposed in this paper. In evidence difference measure (EDM) neighbor consensus, an evidence-free equivalent expression of EDM among neighbored agents is derived with the shared dot product protocol for pignistic probability and the identical judgment of two events with maximal subjective probabilities, so that evidence privacy is guaranteed due to such irreversible evidence transformation. In EDM network consensus, the non-neighbored EDMs are inferred and neighbored EDMs reach uniformity via interaction between linear average consensus (LAC) and low-rank matrix completion with rank adaptation to guarantee EDM consensus convergence and no solution of inferring raw evidence in numerical iteration style. In fusion network consensus, a privacy-preserving LAC with a self-cancelling differential privacy term is proposed, where each agent adds its randomness to the sharing content and step-by-step cancels such randomness in consensus iterations. Besides, the sufficient condition of the convergence to the CCEF is explored, and it is proven that raw evidence is impossibly inferred in such an iterative consensus. The simulations show that PCEF is close to CCEF both in credibility and fusion results and obtains higher decision accuracy with less time-comsuming than existing methods.