Abstract:Large Language Models (LLMs) have recently demonstrated remarkable performance in general tasks across various fields. However, their effectiveness within specific domains such as drug development remains challenges. To solve these challenges, we introduce \textbf{Y-Mol}, forming a well-established LLM paradigm for the flow of drug development. Y-Mol is a multiscale biomedical knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction. By integrating millions of multiscale biomedical knowledge and using LLaMA2 as the base LLM, Y-Mol augments the reasoning capability in the biomedical domain by learning from a corpus of publications, knowledge graphs, and expert-designed synthetic data. The capability is further enriched with three types of drug-oriented instructions: description-based prompts from processed publications, semantic-based prompts for extracting associations from knowledge graphs, and template-based prompts for understanding expert knowledge from biomedical tools. Besides, Y-Mol offers a set of LLM paradigms that can autonomously execute the downstream tasks across the entire process of drug development, including virtual screening, drug design, pharmacological properties prediction, and drug-related interaction prediction. Our extensive evaluations of various biomedical sources demonstrate that Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
Abstract:Recently, symbolic music generation has become a focus of numerous deep learning research. Structure as an important part of music, contributes to improving the quality of music, and an increasing number of works start to study the hierarchical structure. In this study, we delve into the multi-level structures within music from macro-level and micro-level hierarchies. At the macro-level hierarchy, we conduct phrase segmentation algorithm to explore how phrases influence the overall development of music, and at the micro-level hierarchy, we design skeleton notes extraction strategy to explore how skeleton notes within each phrase guide the melody generation. Furthermore, we propose a novel Phrase-level Cross-Attention mechanism to capture the intrinsic relationship between macro-level hierarchy and micro-level hierarchy. Moreover, in response to the current lack of research on Chinese-style music, we construct our Small Tunes Dataset: a substantial collection of MIDI files comprising 10088 Small Tunes, a category of traditional Chinese Folk Songs. This dataset serves as the focus of our study. We generate Small Tunes songs utilizing the extracted skeleton notes as conditions, and experiment results indicate that our proposed model, Small Tunes Transformer, outperforms other state-of-the-art models. Besides, we design three novel objective evaluation metrics to evaluate music from both rhythm and melody dimensions.
Abstract:The exploration of language skills in language models (LMs) has always been one of the central goals in mechanistic interpretability. However, existing circuit analyses often fall short in representing the full functional scope of these models, primarily due to the exclusion of Feed-Forward layers. Additionally, isolating the effect of a single language skill from a text, which inherently involves multiple entangled skills, poses a significant challenge. To address these gaps, we introduce a novel concept, Memory Circuit, a minimum unit that fully and independently manipulates the memory-reading functionality of a language model, and disentangle the transformer model precisely into a circuit graph which is an ensemble of paths connecting different memory circuits. Based on this disentanglement, we identify salient circuit paths, named as skill paths, responsible for three crucial language skills, i.e., the Previous Token Skill, Induction Skill and In-Context Learning (ICL) Skill, leveraging causal effect estimation through interventions and counterfactuals. Our experiments on various datasets confirm the correspondence between our identified skill paths and language skills, and validate three longstanding hypotheses: 1) Language skills are identifiable through circuit dissection; 2) Simple language skills reside in shallow layers, whereas complex language skills are found in deeper layers; 3) Complex language skills are formed on top of simpler language skills. Our codes are available at: https://github.com/Zodiark-ch/Language-Skill-of-LLMs.
Abstract:The integration of data from diverse sensor modalities (e.g., camera and LiDAR) constitutes a prevalent methodology within the ambit of autonomous driving scenarios. Recent advancements in efficient point cloud transformers have underscored the efficacy of integrating information in sparse formats. When it comes to fusion, since image patches are dense in pixel space with ambiguous depth, it necessitates additional design considerations for effective fusion. In this paper, we conduct a comprehensive exploration of design choices for Transformer-based sparse cameraLiDAR fusion. This investigation encompasses strategies for image-to-3D and LiDAR-to-2D mapping, attention neighbor grouping, single modal tokenizer, and micro-structure of Transformer. By amalgamating the most effective principles uncovered through our investigation, we introduce FlatFusion, a carefully designed framework for sparse camera-LiDAR fusion. Notably, FlatFusion significantly outperforms state-of-the-art sparse Transformer-based methods, including UniTR, CMT, and SparseFusion, achieving 73.7 NDS on the nuScenes validation set with 10.1 FPS with PyTorch.
Abstract:Evaluating affect analysis methods presents challenges due to inconsistencies in database partitioning and evaluation protocols, leading to unfair and biased results. Previous studies claim continuous performance improvements, but our findings challenge such assertions. Using these insights, we propose a unified protocol for database partitioning that ensures fairness and comparability. We provide detailed demographic annotations (in terms of race, gender and age), evaluation metrics, and a common framework for expression recognition, action unit detection and valence-arousal estimation. We also rerun the methods with the new protocol and introduce a new leaderboards to encourage future research in affect recognition with a fairer comparison. Our annotations, code, and pre-trained models are available on \hyperlink{https://github.com/dkollias/Fair-Consistent-Affect-Analysis}{Github}.
Abstract:The objective of the Multiple Appropriate Facial Reaction Generation (MAFRG) task is to produce contextually appropriate and diverse listener facial behavioural responses based on the multimodal behavioural data of the conversational partner (i.e., the speaker). Current methodologies typically assume continuous availability of speech and facial modality data, neglecting real-world scenarios where these data may be intermittently unavailable, which often results in model failures. Furthermore, despite utilising advanced deep learning models to extract information from the speaker's multimodal inputs, these models fail to adequately leverage the speaker's emotional context, which is vital for eliciting appropriate facial reactions from human listeners. To address these limitations, we propose an Emotion-aware Modality Compensatory (EMC) framework. This versatile solution can be seamlessly integrated into existing models, thereby preserving their advantages while significantly enhancing performance and robustness in scenarios with missing modalities. Our framework ensures resilience when faced with missing modality data through the Compensatory Modality Alignment (CMA) module. It also generates more appropriate emotion-aware reactions via the Emotion-aware Attention (EA) module, which incorporates the speaker's emotional information throughout the entire encoding and decoding process. Experimental results demonstrate that our framework improves the appropriateness metric FRCorr by an average of 57.2\% compared to the original model structure. In scenarios where speech modality data is missing, the performance of appropriate generation shows an improvement, and when facial data is missing, it only exhibits minimal degradation.
Abstract:Controllable music generation promotes the interaction between humans and composition systems by projecting the users' intent on their desired music. The challenge of introducing controllability is an increasingly important issue in the symbolic music generation field. When building controllable generative popular multi-instrument music systems, two main challenges typically present themselves, namely weak controllability and poor music quality. To address these issues, we first propose spatiotemporal features as powerful and fine-grained controls to enhance the controllability of the generative model. In addition, an efficient music representation called REMI_Track is designed to convert multitrack music into multiple parallel music sequences and shorten the sequence length of each track with Byte Pair Encoding (BPE) techniques. Subsequently, we release BandControlNet, a conditional model based on parallel Transformers, to tackle the multiple music sequences and generate high-quality music samples that are conditioned to the given spatiotemporal control features. More concretely, the two specially designed modules of BandControlNet, namely structure-enhanced self-attention (SE-SA) and Cross-Track Transformer (CTT), are utilized to strengthen the resulting musical structure and inter-track harmony modeling respectively. Experimental results tested on two popular music datasets of different lengths demonstrate that the proposed BandControlNet outperforms other conditional music generation models on most objective metrics in terms of fidelity and inference speed and shows great robustness in generating long music samples. The subjective evaluations show BandControlNet trained on short datasets can generate music with comparable quality to state-of-the-art models, while outperforming them significantly using longer datasets.
Abstract:In the field of image manipulation localization (IML), the small quantity and poor quality of existing datasets have always been major issues. A dataset containing various types of manipulations will greatly help improve the accuracy of IML models. Images on the internet (such as those on Baidu Tieba's PS Bar) are manipulated using various techniques, and creating a dataset from these images will significantly enrich the types of manipulations in our data. However, images on the internet suffer from resolution and clarity issues, and the masks obtained by simply subtracting the manipulated image from the original contain various noises. These noises are difficult to remove, rendering the masks unusable for IML models. Inspired by the field of change detection, we treat the original and manipulated images as changes over time for the same image and view the data generation task as a change detection task. However, due to clarity issues between images, conventional change detection models perform poorly. Therefore, we introduced a super-resolution module and proposed the Manipulation Mask Manufacturer (MMM) framework. It enhances the resolution of both the original and tampered images, thereby improving image details for better comparison. Simultaneously, the framework converts the original and tampered images into feature embeddings and concatenates them, effectively modeling the context. Additionally, we created the Manipulation Mask Manufacturer Dataset (MMMD), a dataset that covers a wide range of manipulation techniques. We aim to contribute to the fields of image forensics and manipulation detection by providing more realistic manipulation data through MMM and MMMD. Detailed information about MMMD and the download link can be found at: the code and datasets will be made available.
Abstract:As the parameter size of large language models (LLMs) continues to expand, the need for a large memory footprint and high communication bandwidth have become significant bottlenecks for the training and inference of LLMs. To mitigate these bottlenecks, various tensor compression techniques have been proposed to reduce the data size, thereby alleviating memory requirements and communication pressure. Our research found that video codecs, despite being originally designed for compressing videos, show excellent efficiency when compressing various types of tensors. We demonstrate that video codecs can be versatile and general-purpose tensor codecs while achieving the state-of-the-art compression efficiency in various tasks. We further make use of the hardware video encoding and decoding module available on GPUs to create a framework capable of both inference and training with video codecs repurposed as tensor codecs. This greatly reduces the requirement for memory capacity and communication bandwidth, enabling training and inference of large models on consumer-grade GPUs.
Abstract:A comprehensive benchmark is yet to be established in the Image Manipulation Detection \& Localization (IMDL) field. The absence of such a benchmark leads to insufficient and misleading model evaluations, severely undermining the development of this field. However, the scarcity of open-sourced baseline models and inconsistent training and evaluation protocols make conducting rigorous experiments and faithful comparisons among IMDL models challenging. To address these challenges, we introduce IMDL-BenCo, the first comprehensive IMDL benchmark and modular codebase. IMDL-BenCo:~\textbf{i)} decomposes the IMDL framework into standardized, reusable components and revises the model construction pipeline, improving coding efficiency and customization flexibility;~\textbf{ii)} fully implements or incorporates training code for state-of-the-art models to establish a comprehensive IMDL benchmark; and~\textbf{iii)} conducts deep analysis based on the established benchmark and codebase, offering new insights into IMDL model architecture, dataset characteristics, and evaluation standards. Specifically, IMDL-BenCo includes common processing algorithms, 8 state-of-the-art IMDL models (1 of which are reproduced from scratch), 2 sets of standard training and evaluation protocols, 15 GPU-accelerated evaluation metrics, and 3 kinds of robustness evaluation. This benchmark and codebase represent a significant leap forward in calibrating the current progress in the IMDL field and inspiring future breakthroughs. Code is available at: https://github.com/scu-zjz/IMDLBenCo