Abstract:In-Context Learning (ICL) emerges as a key feature for Large Language Models (LLMs), allowing them to adapt to new tasks by leveraging task-specific examples without updating model parameters. However, ICL faces challenges with increasing numbers of examples due to performance degradation and quadratic computational costs. In this paper, we propose Logit Arithmetic Reweighting Approach (LARA), a novel framework that enhances ICL by using logit-based ensembling of multiple demonstrations. Our approach divides long input demonstrations into parallelizable shorter inputs to significantly reduce memory requirements, and then effectively aggregate the information by reweighting logits of each group via a non-gradient optimization approach. We further introduce Binary LARA (B-LARA), a variant that constrains weights to binary values to simplify the search space and reduces memory usage by filtering out less informative demonstration groups. Experiments on BBH and MMLU demonstrate that LARA and B-LARA outperform all baseline methods in both accuracy and memory efficiency. We also conduct extensive analysis to show that LARA generalizes well to scenarios of varying numbers of examples from limited to many-shot demonstrations.
Abstract:Language model calibration refers to the alignment between the confidence of the model and the actual performance of its responses. While previous studies point out the overconfidence phenomenon in Large Language Models (LLMs) and show that LLMs trained with Reinforcement Learning from Human Feedback (RLHF) are overconfident with a more sharpened output probability, in this study, we reveal that RLHF tends to lead models to express verbalized overconfidence in their own responses. We investigate the underlying cause of this overconfidence and demonstrate that reward models used for Proximal Policy Optimization (PPO) exhibit inherent biases towards high-confidence scores regardless of the actual quality of responses. Building upon this insight, we propose two PPO variants: PPO-M: PPO with Calibrated Reward Modeling and PPO-C: PPO with Calibrated Reward Calculation. PPO-M integrates explicit confidence scores in reward model training, which calibrates reward models to better capture the alignment between response quality and verbalized confidence. PPO-C adjusts the reward score during PPO based on the difference between the current reward and the moving average of past rewards. Both PPO-M and PPO-C can be seamlessly integrated into the current PPO pipeline and do not require additional golden labels. We evaluate our methods on both Llama3-8B and Mistral-7B across six diverse datasets including multiple-choice and open-ended generation. Experiment results demonstrate that both of our methods can reduce calibration error and maintain performance comparable to standard PPO. We further show that they do not compromise model capabilities in open-ended conversation settings.
Abstract:Foundation models, such as Large Language Models (LLMs) or Large Vision Models (LVMs), have emerged as one of the most powerful tools in the respective fields. However, unlike text and image data, graph data do not have a definitive structure, posing great challenges to developing a Graph Foundation Model (GFM). For example, current attempts at designing general graph models either transform graph data into a language format for LLM-based prediction or still train a GNN model with LLM as an assistant. The former can handle unlimited tasks, while the latter captures graph structure much better -- yet, no existing work can achieve both simultaneously. In this paper, we identify three key desirable properties of a GFM: self-supervised pretraining, fluidity in tasks, and graph awareness. To account for these properties, we extend the conventional language modeling to the graph domain and propose a novel generative graph language model GOFA to solve the problem. The model interleaves randomly initialized GNN layers into a frozen pre-trained LLM so that the semantic and structural modeling abilities are organically combined. GOFA is pre-trained on newly proposed graph-level next-word prediction, question-answering, and structural tasks to obtain the above GFM properties. The pre-trained model is further fine-tuned on downstream tasks to obtain task-solving ability. The fine-tuned model is evaluated on various downstream tasks, demonstrating a strong ability to solve structural and contextual problems in zero-shot scenarios. The code is available at https://github.com/JiaruiFeng/GOFA.
Abstract:While Large Language Models (LLMs) have demonstrated proficiency in handling complex queries, much of the past work has depended on extensively annotated datasets by human experts. However, this reliance on fully-supervised annotations poses scalability challenges, particularly as models and data requirements grow. To mitigate this, we explore the potential of enhancing LLMs' reasoning abilities with minimal human supervision. In this work, we introduce self-reinforcement, which begins with Supervised Fine-Tuning (SFT) of the model using a small collection of annotated questions. Then it iteratively improves LLMs by learning from the differences in responses from the SFT and unfinetuned models on unlabeled questions. Our approach provides an efficient approach without relying heavily on extensive human-annotated explanations. However, current reasoning benchmarks typically only include golden-reference answers or rationales. Therefore, we present \textsc{PuzzleBen}, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales across various domains, such as brainteasers, puzzles, riddles, parajumbles, and critical reasoning tasks. A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities. Our experiments underscore the significance of \textsc{PuzzleBen}, as well as the effectiveness of our methodology as a promising direction in future endeavors. Our dataset and code will be published soon on \texttt{Anonymity Link}.
Abstract:Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks. This paper investigates LoRA composability for cross-task generalization and introduces LoraHub, a strategic framework devised for the purposive assembly of LoRA modules trained on diverse given tasks, with the objective of achieving adaptable performance on unseen tasks. With just a few examples from a novel task, LoraHub enables the fluid combination of multiple LoRA modules, eradicating the need for human expertise. Notably, the composition requires neither additional model parameters nor gradients. Our empirical results, derived from the Big-Bench Hard (BBH) benchmark, suggest that LoraHub can effectively mimic the performance of in-context learning in few-shot scenarios, excluding the necessity of in-context examples alongside each inference input. A significant contribution of our research is the fostering of a community for LoRA, where users can share their trained LoRA modules, thereby facilitating their application to new tasks. We anticipate this resource will widen access to and spur advancements in general intelligence as well as LLMs in production. Code will be available at https://github.com/sail-sg/lorahub.
Abstract:Large pre-trained language models (PLMs) have proven to be a crucial component of modern natural language processing systems. PLMs typically need to be fine-tuned on task-specific downstream datasets, which makes it hard to claim the ownership of PLMs and protect the developer's intellectual property due to the catastrophic forgetting phenomenon. We show that PLMs can be watermarked with a multi-task learning framework by embedding backdoors triggered by specific inputs defined by the owners, and those watermarks are hard to remove even though the watermarked PLMs are fine-tuned on multiple downstream tasks. In addition to using some rare words as triggers, we also show that the combination of common words can be used as backdoor triggers to avoid them being easily detected. Extensive experiments on multiple datasets demonstrate that the embedded watermarks can be robustly extracted with a high success rate and less influenced by the follow-up fine-tuning.
Abstract:Distantly supervision automatically generates plenty of training samples for relation extraction. However, it also incurs two major problems: noisy labels and imbalanced training data. Previous works focus more on reducing wrongly labeled relations (false positives) while few explore the missing relations that are caused by incompleteness of knowledge base (false negatives). Furthermore, the quantity of negative labels overwhelmingly surpasses the positive ones in previous problem formulations. In this paper, we first provide a thorough analysis of the above challenges caused by negative data. Next, we formulate the problem of relation extraction into as a positive unlabeled learning task to alleviate false negative problem. Thirdly, we propose a pipeline approach, dubbed \textsc{ReRe}, that performs sentence-level relation detection then subject/object extraction to achieve sample-efficient training. Experimental results show that the proposed method consistently outperforms existing approaches and remains excellent performance even learned with a large quantity of false positive samples.