Abstract:Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
Abstract:Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
Abstract:Vision-language instruction tuning achieves two main purposes: learning visual concepts and learning visual skills. In this paper, we found that vision-language benchmarks fall into the dichotomy of mainly benefiting from training on instructions with similar skills or visual concepts. Inspired by the discovery, we designed a simple targeted training data selection method to optimize the performance of a given benchmark. We first extract the concepts/skills from the benchmark, determine whether the benchmark predominantly benefits from similar concepts or skills, and finally select instructions with the most matching concepts/skills. Experiments on 10+ benchmarks validate the effectiveness of our targeted data selection method, showing +0.9\% over the best existing baseline averaged over all benchmarks and +1.5\% on the skill-focused subset. Our findings underscore the importance of recognizing the inherent trade-off within instruction selection, which requires balancing the acquisition of conceptual knowledge against visual skill.
Abstract:While recent success of large reasoning models (LRMs) significantly advanced LLMs' reasoning capability by optimizing the final answer accuracy using reinforcement learning, they may also drastically increase the output length due to overthinking, characterized by unnecessarily complex reasoning paths that waste computation and potentially degrade the performance. We hypothesize that such inefficiencies stem from LRMs' limited capability to dynamically select the proper modular reasoning strategies, termed thinking patterns at the right position. To investigate this hypothesis, we propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns, systematically identifying and promoting beneficial patterns that improve the answer while removing detrimental ones. Empirical analysis confirms that our optimized thinking paths yield more concise yet sufficiently informative trajectories, enhancing reasoning efficiency by reducing attention FLOPs by up to 47% while maintaining accuracy for originally correct responses. Moreover, a non-trivial portion of originally incorrect responses are transformed into correct ones, achieving a 15.6% accuracy improvement with reduced length. Motivated by the improvement brought by the optimized thinking paths, we apply a preference optimization technique supported by a pairwise dataset contrasting suboptimal and optimal reasoning paths. Experimental evaluations across multiple mathematical reasoning benchmarks reveal that our method notably reduces computational overhead while simultaneously improving reasoning accuracy, achieving up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
Abstract:Advancements in quantum computing have spurred significant interest in harnessing its potential for speedups over classical systems. However, noise remains a major obstacle to achieving reliable quantum algorithms. In this work, we present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers. Our method, with a natural connection to Evolutionary Strategies, guarantees resilience to parameter noise with minimal adjustments to commonly used optimization algorithms. Our approach is function-agnostic and adaptable to various quantum circuits, successfully demonstrated in quantum phase classification tasks. By developing provably guaranteed optimization theory with quantum circuits, our work opens new avenues for practical, robust applications of near-term quantum computers.
Abstract:Large Language Models (LLMs) have shown tremendous potential as agents, excelling at tasks that require multiple rounds of reasoning and interactions. Rejection Sampling Fine-Tuning (RFT) has emerged as an effective method for finetuning LLMs as agents: it first imitates expert-generated successful trajectories and further improves agentic skills through iterative fine-tuning on successful, self-generated trajectories. However, since the expert (e.g., GPT-4) succeeds primarily on simpler subtasks and RFT inherently favors simpler scenarios, many complex subtasks remain unsolved and persistently out-of-distribution (OOD). Upon investigating these challenging subtasks, we discovered that previously failed expert trajectories can often provide valuable guidance, e.g., plans and key actions, that can significantly improve agent exploration efficiency and acquisition of critical skills. Motivated by these observations, we propose Exploring Expert Failures (EEF), which identifies beneficial actions from failed expert trajectories and integrates them into the training dataset. Potentially harmful actions are meticulously excluded to prevent contamination of the model learning process. By leveraging the beneficial actions in expert failures, EEF successfully solves some previously unsolvable subtasks and improves agent tuning performance. Remarkably, our approach achieved a 62\% win rate in WebShop, outperforming RFT (53. 6\%) and GPT-4 (35. 6\%), and to the best of our knowledge, setting a new state-of-the-art as the first method to surpass a score of 0.81 in WebShop and exceed 81 in SciWorld.
Abstract:Recently DeepSeek R1 demonstrated how reinforcement learning with simple rule-based incentives can enable autonomous development of complex reasoning in large language models, characterized by the "aha moment", in which the model manifest self-reflection and increased response length during training. However, attempts to extend this success to multimodal reasoning often failed to reproduce these key characteristics. In this report, we present the first successful replication of these emergent characteristics for multimodal reasoning on only a non-SFT 2B model. Starting with Qwen2-VL-2B and applying reinforcement learning directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately ~30% and exceeding both SFT setting by ~2%. In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models. aiming to shed light on the challenges involved. Our key observations include: (1) applying RL on instruct model often results in trivial reasoning trajectories, and (2) naive length reward are ineffective in eliciting reasoning capabilities. The project code is available at https://github.com/turningpoint-ai/VisualThinker-R1-Zero




Abstract:In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.




Abstract:We study the problem of learning Lyapunov-stable neural controllers which provably satisfy the Lyapunov asymptotic stability condition within a region-of-attraction. Compared to previous works which commonly used counterexample guided training on this task, we develop a new and generally formulated certified training framework named CT-BaB, and we optimize for differentiable verified bounds, to produce verification-friendly models. In order to handle the relatively large region-of-interest, we propose a novel framework of training-time branch-and-bound to dynamically maintain a training dataset of subregions throughout training, such that the hardest subregions are iteratively split into smaller ones whose verified bounds can be computed more tightly to ease the training. We demonstrate that our new training framework can produce models which can be more efficiently verified at test time. On the largest 2D quadrotor dynamical system, verification for our model is more than 5X faster compared to the baseline, while our size of region-of-attraction is 16X larger than the baseline.
Abstract:Pretrained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pretraining. In this paper, we investigate the loss of context awareness after SFT, defined as the capability to extract and understand information from the user-provided context and respond accordingly. We are the first to identify and show that the loss of context-awareness appears on instruction-finetuned LLMs when the chat template is applied to the input prompts. We identify the performance decline is partially caused by the bias embedded into the chat template to focus less on the user-provided context. Based on these observations, we propose two methods to mitigate the loss of context awareness in instruct models: post-hoc attention steering on user prompts and conditional instruction fine-tuning with a context-dependency indicator. Empirical experiments on 4 context-dependent downstream tasks and 3 pretrained LLMs of different sizes show that our methods effectively mitigates the loss of context awareness without compromising the general ability to follow instructions. Our findings also strongly advocate the necessity to carefully benchmark context awareness after instruction fine-tuning.