Abstract:Knowledge distillation is a mainstream algorithm in model compression by transferring knowledge from the larger model (teacher) to the smaller model (student) to improve the performance of student. Despite many efforts, existing methods mainly investigate the consistency between instance-level feature representation or prediction, which neglects the category-level information and the difficulty of each sample, leading to undesirable performance. To address these issues, we propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD). It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers in a contrastive learning fashion, which can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories, contributing to discriminative category centers and better classification results. Besides, we introduce a novel preview strategy to dynamically determine how much the student should learn from each sample according to their difficulty. Different from existing methods that treat all samples equally and curriculum learning that simply filters out hard samples, our method assigns a small weight for hard instances as a preview to better guide the student training. Extensive experiments on several challenging datasets, including CIFAR-100 and ImageNet, demonstrate the superiority over state-of-the-art methods.
Abstract:Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples while preserving the knowledge of previously learned classes. Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially, prone to overfitting to the current session. Existing dynamic strategies require the expansion of the parameter space continually, leading to increased complexity. To address these challenges, we integrate the recently proposed selective state space model (SSM) into FSCIL. Concretely, we propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation. The dual design enables the model to maintain the robust features of base classes, while adaptively learning distinctive feature shifts for novel classes. Additionally, we develop a class-sensitive selective scan mechanism to guide dynamic adaptation. It minimizes the disruption to base-class representations caused by training on novel data, and meanwhile, forces the selective scan to perform in distinct patterns between base and novel classes. Experiments on miniImageNet, CUB-200, and CIFAR-100 demonstrate that our framework outperforms the existing state-of-the-art methods. The code is available at https://github.com/xiaojieli0903/Mamba-FSCIL.
Abstract:Fine-Tuning Diffusion Models enable a wide range of personalized generation and editing applications on diverse visual modalities. While Low-Rank Adaptation (LoRA) accelerates the fine-tuning process, it still requires multiple reference images and time-consuming training, which constrains its scalability for large-scale and real-time applications. In this paper, we propose \textit{View Iterative Self-Attention Control (VisCtrl)} to tackle this challenge. Specifically, VisCtrl is a training-free method that injects the appearance and structure of a user-specified subject into another subject in the target image, unlike previous approaches that require fine-tuning the model. Initially, we obtain the initial noise for both the reference and target images through DDIM inversion. Then, during the denoising phase, features from the reference image are injected into the target image via the self-attention mechanism. Notably, by iteratively performing this feature injection process, we ensure that the reference image features are gradually integrated into the target image. This approach results in consistent and harmonious editing with only one reference image in a few denoising steps. Moreover, benefiting from our plug-and-play architecture design and the proposed Feature Gradual Sampling strategy for multi-view editing, our method can be easily extended to edit in complex visual domains. Extensive experiments show the efficacy of VisCtrl across a spectrum of tasks, including personalized editing of images, videos, and 3D scenes.
Abstract:Relieving the reliance of neural network training on a global back-propagation (BP) has emerged as a notable research topic due to the biological implausibility and huge memory consumption caused by BP. Among the existing solutions, local learning optimizes gradient-isolated modules of a neural network with local errors and has been proved to be effective even on large-scale datasets. However, the reconciliation among local errors has never been investigated. In this paper, we first theoretically study non-greedy layer-wise training and show that the convergence cannot be assured when the local gradient in a module w.r.t. its input is not reconciled with the local gradient in the previous module w.r.t. its output. Inspired by the theoretical result, we further propose a local training strategy that successively regularizes the gradient reconciliation between neighboring modules without breaking gradient isolation or introducing any learnable parameters. Our method can be integrated into both local-BP and BP-free settings. In experiments, we achieve significant performance improvements compared to previous methods. Particularly, our method for CNN and Transformer architectures on ImageNet is able to attain a competitive performance with global BP, saving more than 40% memory consumption.
Abstract:Current parameter-efficient fine-tuning (PEFT) methods build adapters without considering the context of downstream task to learn, or the context of important knowledge to maintain. As a result, there is often a performance gap compared to full-parameter finetuning, and meanwhile the finetuned model suffers from catastrophic forgetting of the pre-trained world knowledge. In this paper, we propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable adapters from weight decomposition oriented by the context of downstream task or world knowledge. Concretely, we collect a few data samples, and perform singular value decomposition for each linear layer of a pre-trained LLM multiplied by the covariance matrix of the input activation using these samples. By doing so, the context of the representative samples is captured through deciding the factorizing orientation. Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation. For the former, we use question-answering samples to obtain the covariance matrices, and use the decomposed components with the smallest $r$ singular values to initialize a learnable adapter, with the others frozen such that the world knowledge is better preserved. For the latter, we use the instruction data from the finetuning task, such as math or coding, to orientate the decomposition and train the largest $r$ components that capture the main characteristics of the task to learn. We conduct extensive experiments on Math, Code, and Instruction Following tasks. Our knowledge-preserved adaptation not only achieves better performance than LoRA on finetuning tasks, but also mitigates the forgetting of world knowledge. Our instruction-previewed adaptation is able to further enhance the finetuning performance, surpassing full-parameter finetuning and the state-of-the-art PEFT methods.
Abstract:Multi-band radiomap reconstruction (MB-RMR) is a key component in wireless communications for tasks such as spectrum management and network planning. However, traditional machine-learning-based MB-RMR methods, which rely heavily on simulated data or complete structured ground truth, face significant deployment challenges. These challenges stem from the differences between simulated and actual data, as well as the scarcity of real-world measurements. To address these challenges, our study presents RadioGAT, a novel framework based on Graph Attention Network (GAT) tailored for MB-RMR within a single area, eliminating the need for multi-region datasets. RadioGAT innovatively merges model-based spatial-spectral correlation encoding with data-driven radiomap generalization, thus minimizing the reliance on extensive data sources. The framework begins by transforming sparse multi-band data into a graph structure through an innovative encoding strategy that leverages radio propagation models to capture the spatial-spectral correlation inherent in the data. This graph-based representation not only simplifies data handling but also enables tailored label sampling during training, significantly enhancing the framework's adaptability for deployment. Subsequently, The GAT is employed to generalize the radiomap information across various frequency bands. Extensive experiments using raytracing datasets based on real-world environments have demonstrated RadioGAT's enhanced accuracy in supervised learning settings and its robustness in semi-supervised scenarios. These results underscore RadioGAT's effectiveness and practicality for MB-RMR in environments with limited data availability.
Abstract:Self-supervised learning has achieved remarkable success in acquiring high-quality representations from unlabeled data. The widely adopted contrastive learning framework aims to learn invariant representations by minimizing the distance between positive views originating from the same image. However, existing techniques to construct positive views highly rely on manual transformations, resulting in limited diversity and potentially false positive pairs. To tackle these challenges, we present GenView, a controllable framework that augments the diversity of positive views leveraging the power of pretrained generative models while preserving semantics. We develop an adaptive view generation method that dynamically adjusts the noise level in sampling to ensure the preservation of essential semantic meaning while introducing variability. Additionally, we introduce a quality-driven contrastive loss, which assesses the quality of positive pairs by considering both foreground similarity and background diversity. This loss prioritizes the high-quality positive pairs we construct while reducing the influence of low-quality pairs, thereby mitigating potential semantic inconsistencies introduced by generative models and aggressive data augmentation. Thanks to the improved positive view quality and the quality-driven contrastive loss, GenView significantly improves self-supervised learning across various tasks. For instance, GenView improves MoCov2 performance by 2.5%/2.2% on ImageNet linear/semi-supervised classification. Moreover, GenView even performs much better than naively augmenting the ImageNet dataset with Laion400M or ImageNet21K. Code is available at https://github.com/xiaojieli0903/genview.
Abstract:The prevalence of smartphone and consumer camera has led to more evidence in the form of digital images, which are mostly taken in uncontrolled and uncooperative environments. In these images, criminals likely hide or cover their faces while their hands are observable in some cases, creating a challenging use case for forensic investigation. Many existing hand-based recognition methods perform well for hand images collected in controlled environments with user cooperation. However, their performance deteriorates significantly in uncontrolled and uncooperative environments. A recent work has exposed the potential of hand recognition in these environments. However, only the palmar regions were considered, and the recognition performance is still far from satisfactory. To improve the recognition accuracy, an algorithm integrating a multi-spatial transformer network (MSTN) and multiple loss functions is proposed to fully utilize information in full hand images. MSTN is firstly employed to localize the palms and fingers and estimate the alignment parameters. Then, the aligned images are further fed into pretrained convolutional neural networks, where features are extracted. Finally, a training scheme with multiple loss functions is used to train the network end-to-end. To demonstrate the effectiveness of the proposed algorithm, the trained model is evaluated on NTU-PI-v1 database and six benchmark databases from different domains. Experimental results show that the proposed algorithm performs significantly better than the existing methods in these uncontrolled and uncooperative environments and has good generalization capabilities to samples from different domains.
Abstract:As one of the fundamental functions of autonomous driving system, freespace detection aims at classifying each pixel of the image captured by the camera as drivable or non-drivable. Current works of freespace detection heavily rely on large amount of densely labeled training data for accuracy and robustness, which is time-consuming and laborious to collect and annotate. To the best of our knowledge, we are the first work to explore unsupervised domain adaptation for freespace detection to alleviate the data limitation problem with synthetic data. We develop a cross-modality domain adaptation framework which exploits both RGB images and surface normal maps generated from depth images. A Collaborative Cross Guidance (CCG) module is proposed to leverage the context information of one modality to guide the other modality in a cross manner, thus realizing inter-modality intra-domain complement. To better bridge the domain gap between source domain (synthetic data) and target domain (real-world data), we also propose a Selective Feature Alignment (SFA) module which only aligns the features of consistent foreground area between the two domains, thus realizing inter-domain intra-modality adaptation. Extensive experiments are conducted by adapting three different synthetic datasets to one real-world dataset for freespace detection respectively. Our method performs closely to fully supervised freespace detection methods (93.08 v.s. 97.50 F1 score) and outperforms other general unsupervised domain adaptation methods for semantic segmentation with large margins, which shows the promising potential of domain adaptation for freespace detection.
Abstract:Conventional knowledge distillation (KD) methods for object detection mainly concentrate on homogeneous teacher-student detectors. However, the design of a lightweight detector for deployment is often significantly different from a high-capacity detector. Thus, we investigate KD among heterogeneous teacher-student pairs for a wide application. We observe that the core difficulty for heterogeneous KD (hetero-KD) is the significant semantic gap between the backbone features of heterogeneous detectors due to the different optimization manners. Conventional homogeneous KD (homo-KD) methods suffer from such a gap and are hard to directly obtain satisfactory performance for hetero-KD. In this paper, we propose the HEtero-Assists Distillation (HEAD) framework, leveraging heterogeneous detection heads as assistants to guide the optimization of the student detector to reduce this gap. In HEAD, the assistant is an additional detection head with the architecture homogeneous to the teacher head attached to the student backbone. Thus, a hetero-KD is transformed into a homo-KD, allowing efficient knowledge transfer from the teacher to the student. Moreover, we extend HEAD into a Teacher-Free HEAD (TF-HEAD) framework when a well-trained teacher detector is unavailable. Our method has achieved significant improvement compared to current detection KD methods. For example, on the MS-COCO dataset, TF-HEAD helps R18 RetinaNet achieve 33.9 mAP (+2.2), while HEAD further pushes the limit to 36.2 mAP (+4.5).