Moore Threads
Abstract:We propose EVOlutionary Selector (EVOS), an efficient training paradigm for accelerating Implicit Neural Representation (INR). Unlike conventional INR training that feeds all samples through the neural network in each iteration, our approach restricts training to strategically selected points, reducing computational overhead by eliminating redundant forward passes. Specifically, we treat each sample as an individual in an evolutionary process, where only those fittest ones survive and merit inclusion in training, adaptively evolving with the neural network dynamics. While this is conceptually similar to Evolutionary Algorithms, their distinct objectives (selection for acceleration vs. iterative solution optimization) require a fundamental redefinition of evolutionary mechanisms for our context. In response, we design sparse fitness evaluation, frequency-guided crossover, and augmented unbiased mutation to comprise EVOS. These components respectively guide sample selection with reduced computational cost, enhance performance through frequency-domain balance, and mitigate selection bias from cached evaluation. Extensive experiments demonstrate that our method achieves approximately 48%-66% reduction in training time while ensuring superior convergence without additional cost, establishing state-of-the-art acceleration among recent sampling-based strategies.
Abstract:We propose symmetric power transformation to enhance the capacity of Implicit Neural Representation~(INR) from the perspective of data transformation. Unlike prior work utilizing random permutation or index rearrangement, our method features a reversible operation that does not require additional storage consumption. Specifically, we first investigate the characteristics of data that can benefit the training of INR, proposing the Range-Defined Symmetric Hypothesis, which posits that specific range and symmetry can improve the expressive ability of INR. Based on this hypothesis, we propose a nonlinear symmetric power transformation to achieve both range-defined and symmetric properties simultaneously. We use the power coefficient to redistribute data to approximate symmetry within the target range. To improve the robustness of the transformation, we further design deviation-aware calibration and adaptive soft boundary to address issues of extreme deviation boosting and continuity breaking. Extensive experiments are conducted to verify the performance of the proposed method, demonstrating that our transformation can reliably improve INR compared with other data transformations. We also conduct 1D audio, 2D image and 3D video fitting tasks to demonstrate the effectiveness and applicability of our method.
Abstract:As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.
Abstract:Effective compression technology is crucial for 3DGS to adapt to varying storage and transmission conditions. However, existing methods fail to address size constraints while maintaining optimal quality. In this paper, we introduce SizeGS, a framework that compresses 3DGS within a specified size budget while optimizing visual quality. We start with a size estimator to establish a clear relationship between file size and hyperparameters. Leveraging this estimator, we incorporate mixed precision quantization (MPQ) into 3DGS attributes, structuring MPQ in two hierarchical level -- inter-attribute and intra-attribute -- to optimize visual quality under the size constraint. At the inter-attribute level, we assign bit-widths to each attribute channel by formulating the combinatorial optimization as a 0-1 integer linear program, which can be efficiently solved. At the intra-attribute level, we divide each attribute channel into blocks of vectors, quantizing each vector based on the optimal bit-width derived at the inter-attribute level. Dynamic programming determines block lengths. Using the size estimator and MPQ, we develop a calibrated algorithm to identify optimal hyperparameters in just 10 minutes, achieving a 1.69$\times$ efficiency increase with quality comparable to state-of-the-art methods.
Abstract:Research on loss surface geometry, such as Sharpness-Aware Minimization (SAM), shows that flatter minima improve generalization. Recent studies further reveal that flatter minima can also reduce the domain generalization (DG) gap. However, existing flatness-based DG techniques predominantly operate within a full-precision training process, which is impractical for deployment on resource-constrained edge devices that typically rely on lower bit-width representations (e.g., 4 bits, 3 bits). Consequently, low-precision quantization-aware training is critical for optimizing these techniques in real-world applications. In this paper, we observe a significant degradation in performance when applying state-of-the-art DG-SAM methods to quantized models, suggesting that current approaches fail to preserve generalizability during the low-precision training process. To address this limitation, we propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG. Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization, where the task loss and smoothness loss induce conflicting gradients for the scaling factors of quantizers, with certain layers exhibiting opposing gradient directions. This conflict renders the optimization of quantized weights highly unstable. To mitigate this, we further introduce a mechanism to quantify gradient inconsistencies and selectively freeze the gradients of scaling factors, thereby stabilizing the training process and enhancing out-of-domain generalization. Extensive experiments validate the effectiveness of the proposed GAQAT framework. On PACS, our 3-bit and 4-bit models outperform direct DG-QAT integration by up to 4.5%. On DomainNet, the 4-bit model achieves near-lossless performance compared to full precision, with improvements of 1.39% (4-bit) and 1.06% (3-bit) over the SOTA QAT baseline.
Abstract:Utilizing large language models (LLMs) for tool planning has emerged as a promising avenue for developing general AI systems, where LLMs automatically schedule external tools (e.g. vision models) to tackle complex tasks based on task descriptions. To push this paradigm toward practical applications, it is crucial for LLMs to consider tool execution costs (e.g. execution time) for tool planning. Unfortunately, prior studies overlook the tool execution costs, leading to the generation of expensive plans of which the costs outweigh task performance. To fill this gap, we propose the Cost-Aware Tool Planning with LLMs (CATP-LLM) framework, which for the first time provides a coherent design to empower LLMs for cost-aware tool planning. Specifically, CATP-LLM incorporates a tool planning language to enhance the LLM to generate non-sequential plans of multiple branches for efficient concurrent tool execution and cost reduction. Moreover, it further designs a cost-aware offline reinforcement learning algorithm to fine-tune the LLM to optimize the performance-cost trade-off in tool planning. In lack of public cost-related datasets, we further present OpenCATP, the first platform for cost-aware planning evaluation. Experiments on OpenCATP show that CATP-LLM outperforms GPT-4 even when using Llama2-7B as its backbone, with the average improvement of 28.2%-30.2% higher plan performance and 24.7%-45.8% lower costs even on the challenging planning tasks. The codes of CATP-LLM and OpenCATP will be publicly available.
Abstract:A longstanding goal of artificial general intelligence is highly capable generalists that can learn from diverse experiences and generalize to unseen tasks. The language and vision communities have seen remarkable progress toward this trend by scaling up transformer-based models trained on massive datasets, while reinforcement learning (RL) agents still suffer from poor generalization capacity under such paradigms. To tackle this challenge, we propose Meta Decision Transformer (Meta-DT), which leverages the sequential modeling ability of the transformer architecture and robust task representation learning via world model disentanglement to achieve efficient generalization in offline meta-RL. We pretrain a context-aware world model to learn a compact task representation, and inject it as a contextual condition to the causal transformer to guide task-oriented sequence generation. Then, we subtly utilize history trajectories generated by the meta-policy as a self-guided prompt to exploit the architectural inductive bias. We select the trajectory segment that yields the largest prediction error on the pretrained world model to construct the prompt, aiming to encode task-specific information complementary to the world model maximally. Notably, the proposed framework eliminates the requirement of any expert demonstration or domain knowledge at test time. Experimental results on MuJoCo and Meta-World benchmarks across various dataset types show that Meta-DT exhibits superior few and zero-shot generalization capacity compared to strong baselines while being more practical with fewer prerequisites. Our code is available at https://github.com/NJU-RL/Meta-DT.
Abstract:Remote sensing image plays an irreplaceable role in fields such as agriculture, water resources, military, and disaster relief. Pixel-level interpretation is a critical aspect of remote sensing image applications; however, a prevalent limitation remains the need for extensive manual annotation. For this, we try to introduce open-vocabulary semantic segmentation (OVSS) into the remote sensing context. However, due to the sensitivity of remote sensing images to low-resolution features, distorted target shapes and ill-fitting boundaries are exhibited in the prediction mask. To tackle this issue, we propose a simple and general upsampler, SimFeatUp, to restore lost spatial information in deep features in a training-free style. Further, based on the observation of the abnormal response of local patch tokens to [CLS] token in CLIP, we propose to execute a straightforward subtraction operation to alleviate the global bias in patch tokens. Extensive experiments are conducted on 17 remote sensing datasets spanning semantic segmentation, building extraction, road detection, and flood detection tasks. Our method achieves an average of 5.8%, 8.2%, 4%, and 15.3% improvement over state-of-the-art methods on 4 tasks. All codes are released. \url{https://earth-insights.github.io/SegEarth-OV}
Abstract:3D Gaussian Splatting demonstrates excellent quality and speed in novel view synthesis. Nevertheless, the huge file size of the 3D Gaussians presents challenges for transmission and storage. Current works design compact models to replace the substantial volume and attributes of 3D Gaussians, along with intensive training to distill information. These endeavors demand considerable training time, presenting formidable hurdles for practical deployment. To this end, we propose MesonGS, a codec for post-training compression of 3D Gaussians. Initially, we introduce a measurement criterion that considers both view-dependent and view-independent factors to assess the impact of each Gaussian point on the rendering output, enabling the removal of insignificant points. Subsequently, we decrease the entropy of attributes through two transformations that complement subsequent entropy coding techniques to enhance the file compression rate. More specifically, we first replace rotation quaternions with Euler angles; then, we apply region adaptive hierarchical transform to key attributes to reduce entropy. Lastly, we adopt finer-grained quantization to avoid excessive information loss. Moreover, a well-crafted finetune scheme is devised to restore quality. Extensive experiments demonstrate that MesonGS significantly reduces the size of 3D Gaussians while preserving competitive quality.
Abstract:Neural Radiance Fields have achieved success in creating powerful 3D media representations with their exceptional reconstruction capabilities. However, the computational demands of volume rendering pose significant challenges during model training. Existing acceleration techniques often involve redesigning the model architecture, leading to limitations in compatibility across different frameworks. Furthermore, these methods tend to overlook the substantial memory costs incurred. In response to these challenges, we introduce an expansive supervision mechanism that efficiently balances computational load, rendering quality and flexibility for neural radiance field training. This mechanism operates by selectively rendering a small but crucial subset of pixels and expanding their values to estimate the error across the entire area for each iteration. Compare to conventional supervision, our method effectively bypasses redundant rendering processes, resulting in notable reductions in both time and memory consumption. Experimental results demonstrate that integrating expansive supervision within existing state-of-the-art acceleration frameworks can achieve 69% memory savings and 42% time savings, with negligible compromise in visual quality.