Moore Threads
Abstract:Recent vision-language models (VLMs) face significant challenges in test-time adaptation to novel domains. While cache-based methods show promise by leveraging historical information, they struggle with both caching unreliable feature-label pairs and indiscriminately using single-class information during querying, significantly compromising adaptation accuracy. To address these limitations, we propose COSMIC (Clique-Oriented Semantic Multi-space Integration for CLIP), a robust test-time adaptation framework that enhances adaptability through multi-granular, cross-modal semantic caching and graph-based querying mechanisms. Our framework introduces two key innovations: Dual Semantics Graph (DSG) and Clique Guided Hyper-class (CGH). The Dual Semantics Graph constructs complementary semantic spaces by incorporating textual features, coarse-grained CLIP features, and fine-grained DINOv2 features to capture rich semantic relationships. Building upon these dual graphs, the Clique Guided Hyper-class component leverages structured class relationships to enhance prediction robustness through correlated class selection. Extensive experiments demonstrate COSMIC's superior performance across multiple benchmarks, achieving significant improvements over state-of-the-art methods: 15.81% gain on out-of-distribution tasks and 5.33% on cross-domain generation with CLIP RN-50. Code is available at github.com/hf618/COSMIC.
Abstract:Wireless sensing systems, particularly those using mmWave technology, offer distinct advantages over traditional vision-based approaches, such as enhanced privacy and effectiveness in poor lighting conditions. These systems, leveraging FMCW signals, have shown success in human-centric applications like localization, gesture recognition, and so on. However, comprehensive mmWave datasets for diverse applications are scarce, often constrained by pre-processed signatures (e.g., point clouds or RA heatmaps) and inconsistent annotation formats. To overcome these limitations, we propose mmGen, a novel and generalized framework tailored for full-scene mmWave signal generation. By constructing physical signal transmission models, mmGen synthesizes human-reflected and environment-reflected mmWave signals from the constructed 3D meshes. Additionally, we incorporate methods to account for material properties, antenna gains, and multipath reflections, enhancing the realism of the synthesized signals. We conduct extensive experiments using a prototype system with commercial mmWave devices and Kinect sensors. The results show that the average similarity of Range-Angle and micro-Doppler signatures between the synthesized and real-captured signals across three different environments exceeds 0.91 and 0.89, respectively, demonstrating the effectiveness and practical applicability of mmGen.
Abstract:As industrial products become abundant and sophisticated, visual industrial defect detection receives much attention, including two-dimensional and three-dimensional visual feature modeling. Traditional methods use statistical analysis, abnormal data synthesis modeling, and generation-based models to separate product defect features and complete defect detection. Recently, the emergence of foundation models has brought visual and textual semantic prior knowledge. Many methods are based on foundation models (FM) to improve the accuracy of detection, but at the same time, increase model complexity and slow down inference speed. Some FM-based methods have begun to explore lightweight modeling ways, which have gradually attracted attention and deserve to be systematically analyzed. In this paper, we conduct a systematic survey with comparisons and discussions of foundation model methods from different aspects and briefly review non-foundation model (NFM) methods recently published. Furthermore, we discuss the differences between FM and NFM methods from training objectives, model structure and scale, model performance, and potential directions for future exploration. Through comparison, we find FM methods are more suitable for few-shot and zero-shot learning, which are more in line with actual industrial application scenarios and worthy of in-depth research.
Abstract:The co-design of neural network architectures, quantization precisions, and hardware accelerators offers a promising approach to achieving an optimal balance between performance and efficiency, particularly for model deployment on resource-constrained edge devices. In this work, we propose the JAQ Framework, which jointly optimizes the three critical dimensions. However, effectively automating the design process across the vast search space of those three dimensions poses significant challenges, especially when pursuing extremely low-bit quantization. Specifical, the primary challenges include: (1) Memory overhead in software-side: Low-precision quantization-aware training can lead to significant memory usage due to storing large intermediate features and latent weights for back-propagation, potentially causing memory exhaustion. (2) Search time-consuming in hardware-side: The discrete nature of hardware parameters and the complex interplay between compiler optimizations and individual operators make the accelerator search time-consuming. To address these issues, JAQ mitigates the memory overhead through a channel-wise sparse quantization (CSQ) scheme, selectively applying quantization to the most sensitive components of the model during optimization. Additionally, JAQ designs BatchTile, which employs a hardware generation network to encode all possible tiling modes, thereby speeding up the search for the optimal compiler mapping strategy. Extensive experiments demonstrate the effectiveness of JAQ, achieving approximately 7% higher Top-1 accuracy on ImageNet compared to previous methods and reducing the hardware search time per iteration to 0.15 seconds.
Abstract:Tissue semantic segmentation is one of the key tasks in computational pathology. To avoid the expensive and laborious acquisition of pixel-level annotations, a wide range of studies attempt to adopt the class activation map (CAM), a weakly-supervised learning scheme, to achieve pixel-level tissue segmentation. However, CAM-based methods are prone to suffer from under-activation and over-activation issues, leading to poor segmentation performance. To address this problem, we propose a novel weakly-supervised semantic segmentation framework for histopathological images based on image-mixing synthesis and consistency regularization, dubbed HisynSeg. Specifically, synthesized histopathological images with pixel-level masks are generated for fully-supervised model training, where two synthesis strategies are proposed based on Mosaic transformation and B\'ezier mask generation. Besides, an image filtering module is developed to guarantee the authenticity of the synthesized images. In order to further avoid the model overfitting to the occasional synthesis artifacts, we additionally propose a novel self-supervised consistency regularization, which enables the real images without segmentation masks to supervise the training of the segmentation model. By integrating the proposed techniques, the HisynSeg framework successfully transforms the weakly-supervised semantic segmentation problem into a fully-supervised one, greatly improving the segmentation accuracy. Experimental results on three datasets prove that the proposed method achieves a state-of-the-art performance. Code is available at https://github.com/Vison307/HisynSeg.
Abstract:Respiratory sound classification plays a pivotal role in diagnosing respiratory diseases. While deep learning models have shown success with various respiratory sound datasets, our experiments indicate that models trained on one dataset often fail to generalize effectively to others, mainly due to data collection and annotation \emph{inconsistencies}. To address this limitation, we introduce \emph{Lungmix}, a novel data augmentation technique inspired by Mixup. Lungmix generates augmented data by blending waveforms using loudness and random masks while interpolating labels based on their semantic meaning, helping the model learn more generalized representations. Comprehensive evaluations across three datasets, namely ICBHI, SPR, and HF, demonstrate that Lungmix significantly enhances model generalization to unseen data. In particular, Lungmix boosts the 4-class classification score by up to 3.55\%, achieving performance comparable to models trained directly on the target dataset.
Abstract:3D editing has shown remarkable capability in editing scenes based on various instructions. However, existing methods struggle with achieving intuitive, localized editing, such as selectively making flowers blossom. Drag-style editing has shown exceptional capability to edit images with direct manipulation instead of ambiguous text commands. Nevertheless, extending drag-based editing to 3D scenes presents substantial challenges due to multi-view inconsistency. To this end, we introduce DragScene, a framework that integrates drag-style editing with diverse 3D representations. First, latent optimization is performed on a reference view to generate 2D edits based on user instructions. Subsequently, coarse 3D clues are reconstructed from the reference view using a point-based representation to capture the geometric details of the edits. The latent representation of the edited view is then mapped to these 3D clues, guiding the latent optimization of other views. This process ensures that edits are propagated seamlessly across multiple views, maintaining multi-view consistency. Finally, the target 3D scene is reconstructed from the edited multi-view images. Extensive experiments demonstrate that DragScene facilitates precise and flexible drag-style editing of 3D scenes, supporting broad applicability across diverse 3D representations.
Abstract:We propose EVOlutionary Selector (EVOS), an efficient training paradigm for accelerating Implicit Neural Representation (INR). Unlike conventional INR training that feeds all samples through the neural network in each iteration, our approach restricts training to strategically selected points, reducing computational overhead by eliminating redundant forward passes. Specifically, we treat each sample as an individual in an evolutionary process, where only those fittest ones survive and merit inclusion in training, adaptively evolving with the neural network dynamics. While this is conceptually similar to Evolutionary Algorithms, their distinct objectives (selection for acceleration vs. iterative solution optimization) require a fundamental redefinition of evolutionary mechanisms for our context. In response, we design sparse fitness evaluation, frequency-guided crossover, and augmented unbiased mutation to comprise EVOS. These components respectively guide sample selection with reduced computational cost, enhance performance through frequency-domain balance, and mitigate selection bias from cached evaluation. Extensive experiments demonstrate that our method achieves approximately 48%-66% reduction in training time while ensuring superior convergence without additional cost, establishing state-of-the-art acceleration among recent sampling-based strategies.
Abstract:We propose symmetric power transformation to enhance the capacity of Implicit Neural Representation~(INR) from the perspective of data transformation. Unlike prior work utilizing random permutation or index rearrangement, our method features a reversible operation that does not require additional storage consumption. Specifically, we first investigate the characteristics of data that can benefit the training of INR, proposing the Range-Defined Symmetric Hypothesis, which posits that specific range and symmetry can improve the expressive ability of INR. Based on this hypothesis, we propose a nonlinear symmetric power transformation to achieve both range-defined and symmetric properties simultaneously. We use the power coefficient to redistribute data to approximate symmetry within the target range. To improve the robustness of the transformation, we further design deviation-aware calibration and adaptive soft boundary to address issues of extreme deviation boosting and continuity breaking. Extensive experiments are conducted to verify the performance of the proposed method, demonstrating that our transformation can reliably improve INR compared with other data transformations. We also conduct 1D audio, 2D image and 3D video fitting tasks to demonstrate the effectiveness and applicability of our method.
Abstract:As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. For the compression strategy, we design an adaptive and unified Evict-then-Merge framework that accounts for the sparsity and redundancy of KV tokens across different heads. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task.