Abstract:Image Compression for Machines (ICM) aims to compress images for machine vision tasks rather than human viewing. Current works predominantly concentrate on high-level tasks like object detection and semantic segmentation. However, the quality of original images is usually not guaranteed in the real world, leading to even worse perceptual quality or downstream task performance after compression. Low-level (LL) machine vision models, like image restoration models, can help improve such quality, and thereby their compression requirements should also be considered. In this paper, we propose a pioneered ICM framework for LL machine vision tasks, namely LL-ICM. By jointly optimizing compression and LL tasks, the proposed LL-ICM not only enriches its encoding ability in generalizing to versatile LL tasks but also optimizes the processing ability of down-stream LL task models, achieving mutual adaptation for image codecs and LL task models. Furthermore, we integrate large-scale vision-language models into the LL-ICM framework to generate more universal and distortion-robust feature embeddings for LL vision tasks. Therefore, one LL-ICM codec can generalize to multiple tasks. We establish a solid benchmark to evaluate LL-ICM, which includes extensive objective experiments by using both full and no-reference image quality assessments. Experimental results show that LL-ICM can achieve 22.65% BD-rate reductions over the state-of-the-art methods.
Abstract:A multi-level tunable reflection array wide-angle beam scanning method is proposed to address the limited bandwidth and small scanning angle issues of current terahertz beam scanning technology. In this method, a focusing lens and its array are used to achieve terahertz wave spatial beam control, and MEMS mirrors and their arrays are used to achieve wide-angle beam scanning. The 1~3 order terahertz MEMS beam scanning system designed based on this method can extend the mechanical scanning angle of MEMS mirrors by 2~6 times, when tested and verified using an electromagnetic MEMS mirror with a 7mm optical aperture and a scanning angle of 15{\deg} and a D-band terahertz signal source. The experiment shows that the operating bandwidth of the first-order terahertz MEMS beam scanning system is better than 40GHz, the continuous beam scanning angle is about 30{\deg}, the continuous beam scanning cycle response time is about 1.1ms, and the antenna gain is better than 15dBi at 160GHz. This method has been validated for its large bandwidth and scalable scanning angle, and has potential application prospects in terahertz dynamic communication, detection radar, scanning imaging, and other fields.
Abstract:We propose to meta-learn an a self-supervised patient trajectory forecast learning rule by meta-training on a meta-objective that directly optimizes the utility of the patient representation over the subsequent clinical outcome prediction. This meta-objective directly targets the usefulness of a representation generated from unlabeled clinical measurement forecast for later supervised tasks. The meta-learned can then be directly used in target risk prediction, and the limited available samples can be used for further fine-tuning the model performance. The effectiveness of our approach is tested on a real open source patient EHR dataset MIMIC-III. We are able to demonstrate that our attention-based patient state representation approach can achieve much better performance for predicting target risk with low resources comparing with both direct supervised learning and pretraining with all-observation trajectory forecast.
Abstract:Capturing the inter-dependencies among multiple types of clinically-critical events is critical not only to accurate future event prediction, but also to better treatment planning. In this work, we propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events (e.g., kidney failure, mortality) by explicitly modeling the temporal dynamics of patients' latent states. Based on these learned patient states, we further develop a new general discrete-time formulation of the hazard rate function to estimate the survival distribution of patients with significantly improved accuracy. Extensive evaluations over real EMR data show that our proposed model compares favorably to various state-of-the-art baselines. Furthermore, our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
Abstract:Despite progress, deep neural networks still suffer performance declines under distribution shifts between training and test domains, leading to a substantial decrease in Quality of Experience (QoE) for multimedia applications. Existing test-time adaptation (TTA) methods are challenged by dynamic, multiple test distributions within batches. This work provides a new perspective on analyzing batch normalization techniques through class-related and class-irrelevant features, our observations reveal combining source and test batch normalization statistics robustly characterizes target distributions. However, test statistics must have high similarity. We thus propose Discover Your Neighbours (DYN), the first backward-free approach specialized for dynamic TTA. The core innovation is identifying similar samples via instance normalization statistics and clustering into groups which provides consistent class-irrelevant representations. Specifically, Our DYN consists of layer-wise instance statistics clustering (LISC) and cluster-aware batch normalization (CABN). In LISC, we perform layer-wise clustering of approximate feature samples at each BN layer by calculating the cosine similarity of instance normalization statistics across the batch. CABN then aggregates SBN and TCN statistics to collaboratively characterize the target distribution, enabling more robust representations. Experimental results validate DYN's robustness and effectiveness, demonstrating maintained performance under dynamic data stream patterns.
Abstract:Motion transfer of talking-head videos involves generating a new video with the appearance of a subject video and the motion pattern of a driving video. Current methodologies primarily depend on a limited number of subject images and 2D representations, thereby neglecting to fully utilize the multi-view appearance features inherent in the subject video. In this paper, we propose a novel 3D-aware talking-head video motion transfer network, Head3D, which fully exploits the subject appearance information by generating a visually-interpretable 3D canonical head from the 2D subject frames with a recurrent network. A key component of our approach is a self-supervised 3D head geometry learning module, designed to predict head poses and depth maps from 2D subject video frames. This module facilitates the estimation of a 3D head in canonical space, which can then be transformed to align with driving video frames. Additionally, we employ an attention-based fusion network to combine the background and other details from subject frames with the 3D subject head to produce the synthetic target video. Our extensive experiments on two public talking-head video datasets demonstrate that Head3D outperforms both 2D and 3D prior arts in the practical cross-identity setting, with evidence showing it can be readily adapted to the pose-controllable novel view synthesis task.
Abstract:When prompted with a few examples and intermediate steps, large language models (LLMs) have demonstrated impressive performance in various reasoning tasks. However, prompting methods that rely on implicit knowledge in an LLM often hallucinate incorrect answers when the implicit knowledge is wrong or inconsistent with the task. To tackle this problem, we present Hypotheses-to-Theories (HtT), a framework that learns a rule library for reasoning with LLMs. HtT contains two stages, an induction stage and a deduction stage. In the induction stage, an LLM is first asked to generate and verify rules over a set of training examples. Rules that appear and lead to correct answers sufficiently often are collected to form a rule library. In the deduction stage, the LLM is then prompted to employ the learned rule library to perform reasoning to answer test questions. Experiments on both numerical reasoning and relational reasoning problems show that HtT improves existing prompting methods, with an absolute gain of 11-27% in accuracy. The learned rules are also transferable to different models and to different forms of the same problem.
Abstract:Annotating biomedical images for supervised learning is a complex and labor-intensive task due to data diversity and its intricate nature. In this paper, we propose an innovative method, the efficient one-pass selective annotation (EPOSA), that significantly reduces the annotation burden while maintaining robust model performance. Our approach employs a variational autoencoder (VAE) to extract salient features from unannotated images, which are subsequently clustered using the DBSCAN algorithm. This process groups similar images together, forming distinct clusters. We then use a two-stage sample selection algorithm, called representative selection (RepSel), to form a selected dataset. The first stage is a Markov Chain Monte Carlo (MCMC) sampling technique to select representative samples from each cluster for annotations. This selection process is the second stage, which is guided by the principle of maximizing intra-cluster mutual information and minimizing inter-cluster mutual information. This ensures a diverse set of features for model training and minimizes outlier inclusion. The selected samples are used to train a VGG-16 network for image classification. Experimental results on the Med-MNIST dataset demonstrate that our proposed EPOSA outperforms random selection and other state-of-the-art methods under the same annotation budget, presenting a promising direction for efficient and effective annotation in medical image analysis.
Abstract:Deep learning based medical image recognition systems often require a substantial amount of training data with expert annotations, which can be expensive and time-consuming to obtain. Recently, synthetic augmentation techniques have been proposed to mitigate the issue by generating realistic images conditioned on class labels. However, the effectiveness of these methods heavily depends on the representation capability of the trained generative model, which cannot be guaranteed without sufficient labeled training data. To further reduce the dependency on annotated data, we propose a synthetic augmentation method called HistoDiffusion, which can be pre-trained on large-scale unlabeled datasets and later applied to a small-scale labeled dataset for augmented training. In particular, we train a latent diffusion model (LDM) on diverse unlabeled datasets to learn common features and generate realistic images without conditional inputs. Then, we fine-tune the model with classifier guidance in latent space on an unseen labeled dataset so that the model can synthesize images of specific categories. Additionally, we adopt a selective mechanism to only add synthetic samples with high confidence of matching to target labels. We evaluate our proposed method by pre-training on three histopathology datasets and testing on a histopathology dataset of colorectal cancer (CRC) excluded from the pre-training datasets. With HistoDiffusion augmentation, the classification accuracy of a backbone classifier is remarkably improved by 6.4% using a small set of the original labels. Our code is available at https://github.com/karenyyy/HistoDiffAug.
Abstract:Recent advances in deep generative models have led to the development of methods capable of synthesizing high-quality, realistic images. These models pose threats to society due to their potential misuse. Prior research attempted to mitigate these threats by detecting generated images, but the varying traces left by different generative models make it challenging to create a universal detector capable of generalizing to new, unseen generative models. In this paper, we propose to inject a universal adversarial signature into an arbitrary pre-trained generative model, in order to make its generated contents more detectable and traceable. First, the imperceptible optimal signature for each image can be found by a signature injector through adversarial training. Subsequently, the signature can be incorporated into an arbitrary generator by fine-tuning it with the images processed by the signature injector. In this way, the detector corresponding to the signature can be reused for any fine-tuned generator for tracking the generator identity. The proposed method is validated on the FFHQ and ImageNet datasets with various state-of-the-art generative models, consistently showing a promising detection rate. Code will be made publicly available at \url{https://github.com/zengxianyu/genwm}.