Abstract:A multi-level tunable reflection array wide-angle beam scanning method is proposed to address the limited bandwidth and small scanning angle issues of current terahertz beam scanning technology. In this method, a focusing lens and its array are used to achieve terahertz wave spatial beam control, and MEMS mirrors and their arrays are used to achieve wide-angle beam scanning. The 1~3 order terahertz MEMS beam scanning system designed based on this method can extend the mechanical scanning angle of MEMS mirrors by 2~6 times, when tested and verified using an electromagnetic MEMS mirror with a 7mm optical aperture and a scanning angle of 15{\deg} and a D-band terahertz signal source. The experiment shows that the operating bandwidth of the first-order terahertz MEMS beam scanning system is better than 40GHz, the continuous beam scanning angle is about 30{\deg}, the continuous beam scanning cycle response time is about 1.1ms, and the antenna gain is better than 15dBi at 160GHz. This method has been validated for its large bandwidth and scalable scanning angle, and has potential application prospects in terahertz dynamic communication, detection radar, scanning imaging, and other fields.
Abstract:Retinal optical coherence tomography (OCT) images provide crucial insights into the health of the posterior ocular segment. Therefore, the advancement of automated image analysis methods is imperative to equip clinicians and researchers with quantitative data, thereby facilitating informed decision-making. The application of deep learning (DL)-based approaches has gained extensive traction for executing these analysis tasks, demonstrating remarkable performance compared to labor-intensive manual analyses. However, the acquisition of Retinal OCT images often presents challenges stemming from privacy concerns and the resource-intensive labeling procedures, which contradicts the prevailing notion that DL models necessitate substantial data volumes for achieving superior performance. Moreover, limitations in available computational resources constrain the progress of high-performance medical artificial intelligence, particularly in less developed regions and countries. This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources (e.g., data, computation). The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images. This approach establishes a robust model even when confronted with limited labeled data, eliminating the need for an extensive array of parameters, as required in learning from scratch. Comprehensive experimentation on real-world datasets demonstrates that the proposed approach can achieve superior performance in recognizing Retinal OCT images, even when dealing with exceedingly restricted labeled datasets. Furthermore, this method obviates the necessity of learning extensive-scale parameters, making it well-suited for deployment in low-resource scenarios.
Abstract:Prompt treatment for melanoma is crucial. To assist physicians in identifying lesion areas precisely in a quick manner, we propose a novel skin lesion segmentation technique namely SLP-Net, an ultra-lightweight segmentation network based on the spiking neural P(SNP) systems type mechanism. Most existing convolutional neural networks achieve high segmentation accuracy while neglecting the high hardware cost. SLP-Net, on the contrary, has a very small number of parameters and a high computation speed. We design a lightweight multi-scale feature extractor without the usual encoder-decoder structure. Rather than a decoder, a feature adaptation module is designed to replace it and implement multi-scale information decoding. Experiments at the ISIC2018 challenge demonstrate that the proposed model has the highest Acc and DSC among the state-of-the-art methods, while experiments on the PH2 dataset also demonstrate a favorable generalization ability. Finally, we compare the computational complexity as well as the computational speed of the models in experiments, where SLP-Net has the highest overall superiority
Abstract:Breast cancer(BC) is a prevalent type of malignant tumor in women. Early diagnosis and treatment are vital for enhancing the patients' survival rate. Downsampling in deep networks may lead to loss of information, so for compensating the detail and edge information and allowing convolutional neural networks to pay more attention to seek the lesion region, we propose a multi-stages attention architecture based on NSNP neurons with autapses. First, unlike the single-scale attention acquisition methods of existing methods, we set up spatial attention acquisition at each feature map scale of the convolutional network to obtain an fusion global information on attention guidance. Then we introduce a new type of NSNP variants called NSNP neurons with autapses. Specifically, NSNP systems are modularized as feature encoders, recoding the features extracted from convolutional neural network as well as the fusion of attention information and preserve the key characteristic elements in feature maps. This ensures the retention of valuable data while gradually transforming high-dimensional complicated info into low-dimensional ones. The proposed method is evaluated on the public dataset BreakHis at various magnifications and classification tasks. It achieves a classification accuracy of 96.32% at all magnification cases, outperforming state-of-the-art methods. Ablation studies are also performed, verifying the proposed model's efficacy. The source code is available at XhuBobYoung/Breast-cancer-Classification.
Abstract:Support vector machine (SVM) and neural networks (NN) have strong complementarity. SVM focuses on the inner operation among samples while NN focuses on the operation among the features within samples. Thus, it is promising and attractive to combine SVM and NN, as it may provide a more powerful function than SVM or NN alone. However, current work on combining them lacks true integration. To address this, we propose a sample attention memory network (SAMN) that effectively combines SVM and NN by incorporating sample attention module, class prototypes, and memory block to NN. SVM can be viewed as a sample attention machine. It allows us to add a sample attention module to NN to implement the main function of SVM. Class prototypes are representatives of all classes, which can be viewed as alternatives to support vectors. The memory block is used for the storage and update of class prototypes. Class prototypes and memory block effectively reduce the computational cost of sample attention and make SAMN suitable for multi-classification tasks. Extensive experiments show that SAMN achieves better classification performance than single SVM or single NN with similar parameter sizes, as well as the previous best model for combining SVM and NN. The sample attention mechanism is a flexible module that can be easily deepened and incorporated into neural networks that require it.
Abstract:The selection of Gaussian kernel parameters plays an important role in the applications of support vector classification (SVC). A commonly used method is the k-fold cross validation with grid search (CV), which is extremely time-consuming because it needs to train a large number of SVC models. In this paper, a new approach is proposed to train SVC and optimize the selection of Gaussian kernel parameters. We first formulate the training and parameter selection of SVC as a minimax optimization problem named as MaxMin-L2-SVC-NCH, in which the minimization problem is an optimization problem of finding the closest points between two normal convex hulls (L2-SVC-NCH) while the maximization problem is an optimization problem of finding the optimal Gaussian kernel parameters. A lower time complexity can be expected in MaxMin-L2-SVC-NCH because CV is not needed. We then propose a projected gradient algorithm (PGA) for training L2-SVC-NCH. The famous sequential minimal optimization (SMO) algorithm is a special case of the PGA. Thus, the PGA can provide more flexibility than the SMO. Furthermore, the solution of the maximization problem is done by a gradient ascent algorithm with dynamic learning rate. The comparative experiments between MaxMin-L2-SVC-NCH and the previous best approaches on public datasets show that MaxMin-L2-SVC-NCH greatly reduces the number of models to be trained while maintaining competitive test accuracy. These findings indicate that MaxMin-L2-SVC-NCH is a better choice for SVC tasks.
Abstract:Magnetic resonance imaging serves as an essential tool for clinical diagnosis. However, it suffers from a long acquisition time. The utilization of deep learning, especially the deep generative models, offers aggressive acceleration and better reconstruction in magnetic resonance imaging. Nevertheless, learning the data distribution as prior knowledge and reconstructing the image from limited data remains challenging. In this work, we propose a novel Hankel-k-space generative model (HKGM), which can generate samples from a training set of as little as one k-space data. At the prior learning stage, we first construct a large Hankel matrix from k-space data, then extract multiple structured k-space patches from the large Hankel matrix to capture the internal distribution among different patches. Extracting patches from a Hankel matrix enables the generative model to be learned from redundant and low-rank data space. At the iterative reconstruction stage, it is observed that the desired solution obeys the learned prior knowledge. The intermediate reconstruction solution is updated by taking it as the input of the generative model. The updated result is then alternatively operated by imposing low-rank penalty on its Hankel matrix and data consistency con-strain on the measurement data. Experimental results confirmed that the internal statistics of patches within a single k-space data carry enough information for learning a powerful generative model and provide state-of-the-art reconstruction.
Abstract:This letter studies a cloud radio access network (C-RAN) with multiple intelligent reflecting surfaces (IRS) deployed between users and remote radio heads (RRH). Specifically, we consider the uplink transmission where each RRH quantizes the received signals from the users by either point-to-point compression or Wyner-Ziv compression and then transmits the quantization bits to the BBU pool through capacity limited fronthhual links. To maximize the uplink sum rate, we jointly optimize the passive beamformers of IRSs and the quantization noise covariance matrices of fronthoul compression. An joint fronthaul compression and passive beamforming design is proposed by exploiting the Arimoto-Blahut algorithm and semidefinte relaxation (SDR). Numerical results show the performance gain achieved by the proposed algorithm.
Abstract:According to the World Health Organization, the number of mental disorder patients, especially depression patients, has grown rapidly and become a leading contributor to the global burden of disease. However, the present common practice of depression diagnosis is based on interviews and clinical scales carried out by doctors, which is not only labor-consuming but also time-consuming. One important reason is due to the lack of physiological indicators for mental disorders. With the rising of tools such as data mining and artificial intelligence, using physiological data to explore new possible physiological indicators of mental disorder and creating new applications for mental disorder diagnosis has become a new research hot topic. However, good quality physiological data for mental disorder patients are hard to acquire. We present a multi-modal open dataset for mental-disorder analysis. The dataset includes EEG and audio data from clinically depressed patients and matching normal controls. All our patients were carefully diagnosed and selected by professional psychiatrists in hospitals. The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications. The 128-electrodes EEG signals of 53 subjects were recorded as both in resting state and under stimulation; the 3-electrode EEG signals of 55 subjects were recorded in resting state; the audio data of 52 subjects were recorded during interviewing, reading, and picture description. We encourage other researchers in the field to use it for testing their methods of mental-disorder analysis.
Abstract:Clustering aims to separate observed data into different categories. The performance of popular clustering models relies on the sample-to-sample similarity. However, the pairwise similarity is prone to be corrupted by noise or outliers and thus deteriorates the subsequent clustering. A high-order relationship among samples-to-samples may elaborate the local manifold of the data and thus provide complementary information to guide the clustering. However, few studies have investigated the connection between high-order similarity and usual pairwise similarity. To fill this gap, we first define a high-order tensor similarity to exploit the samples-to-samples affinity relationship. We then establish the connection between tensor similarity and pairwise similarity, proving that the decomposable tensor similarity is the Kronecker product of the usual pairwise similarity and the non-decomposable tensor similarity is generalized to provide complementary information, which pairwise similarity fails to regard. Finally, the high-order tensor similarity and pairwise similarity (IPS2) were integrated collaboratively to enhance clustering performance by enjoying their merits. The proposed IPS2 is shown to perform superior or competitive to state-of-the-art methods on synthetic and real-world datasets. Extensive experiments demonstrated that tensor similarity is capable to boost the performance of the classical clustering method.