IBM T. J. Watson Research Center
Abstract:When fine-tuning pre-trained Language Models (LMs) to exhibit desired behaviors, maintaining control over risk is critical for ensuring both safety and trustworthiness. Most existing safety alignment methods, such as Safe RLHF and SACPO, typically operate under a risk-neutral paradigm that is insufficient to address the risks arising from deviations from the reference policy and offers limited robustness against rare but potentially catastrophic harmful behaviors. To address this limitation, we propose Risk-aware Stepwise Alignment (RSA), a novel alignment method that explicitly incorporates risk awareness into the policy optimization process by leveraging a class of nested risk measures. Specifically, RSA formulates safety alignment as a token-level risk-aware constrained policy optimization problem and solves it through a stepwise alignment procedure that yields token-level policy updates derived from the nested risk measures. This design offers two key benefits: (1) it mitigates risks induced by excessive model shift away from a reference policy, and (2) it explicitly suppresses low-probability yet high-impact harmful behaviors. Moreover, we provide theoretical analysis on policy optimality under mild assumptions. Experimental results demonstrate that our method achieves high levels of helpfulness while ensuring strong safety and significantly suppresses tail risks, namely low-probability yet high-impact unsafe responses.
Abstract:We propose a theoretical framework for continual and experiential learning in large language model agents that integrates episodic memory with reinforcement learning. The framework identifies reflection as the key mechanism that enables agents to adapt through interaction without back propagation or model fine tuning, thereby relaxing the conventional separation between training and deployment.To formalise this process, we introduce the Stateful Reflective Decision Process, which models reflective learning as a two stage read write interaction with episodic memory. Writing stores interaction outcomes and corresponds to policy evaluation, while reading retrieves relevant past cases and corresponds to policy improvement. We show that this process induces an equivalent Markov decision process over augmented state memory representations, allowing the use of classical tools from dynamic programming and reinforcement learning. We further instantiate the framework using entropy regularised policy iteration and establish convergence guarantees. As episodic memory grows and achieves sufficient coverage of the state space, the resulting policy converges to the optimal solution. This work provides a principled foundation for memory augmented and retrieval based language model agents capable of continual adaptation without parameter updates.
Abstract:Large vision-language models (LVLMs) have achieved remarkable advancements in multimodal reasoning tasks. However, their widespread accessibility raises critical concerns about potential copyright infringement. Will LVLMs accurately recognize and comply with copyright regulations when encountering copyrighted content (i.e., user input, retrieved documents) in the context? Failure to comply with copyright regulations may lead to serious legal and ethical consequences, particularly when LVLMs generate responses based on copyrighted materials (e.g., retrieved book experts, news reports). In this paper, we present a comprehensive evaluation of various LVLMs, examining how they handle copyrighted content -- such as book excerpts, news articles, music lyrics, and code documentation when they are presented as visual inputs. To systematically measure copyright compliance, we introduce a large-scale benchmark dataset comprising 50,000 multimodal query-content pairs designed to evaluate how effectively LVLMs handle queries that could lead to copyright infringement. Given that real-world copyrighted content may or may not include a copyright notice, the dataset includes query-content pairs in two distinct scenarios: with and without a copyright notice. For the former, we extensively cover four types of copyright notices to account for different cases. Our evaluation reveals that even state-of-the-art closed-source LVLMs exhibit significant deficiencies in recognizing and respecting the copyrighted content, even when presented with the copyright notice. To solve this limitation, we introduce a novel tool-augmented defense framework for copyright compliance, which reduces infringement risks in all scenarios. Our findings underscore the importance of developing copyright-aware LVLMs to ensure the responsible and lawful use of copyrighted content.
Abstract:Large speech generation models are evolving from single-speaker, short sentence synthesis to multi-speaker, long conversation geneartion. Current long-form speech generation models are predominately constrained to dyadic, turn-based interactions. To address this, we introduce JoyVoice, a novel anthropomorphic foundation model designed for flexible, boundary-free synthesis of up to eight speakers. Unlike conventional cascaded systems, JoyVoice employs a unified E2E-Transformer-DiT architecture that utilizes autoregressive hidden representations directly for diffusion inputs, enabling holistic end-to-end optimization. We further propose a MM-Tokenizer operating at a low bitrate of 12.5 Hz, which integrates multitask semantic and MMSE losses to effectively model both semantic and acoustic information. Additionally, the model incorporates robust text front-end processing via large-scale data perturbation. Experiments show that JoyVoice achieves state-of-the-art results in multilingual generation (Chinese, English, Japanese, Korean) and zero-shot voice cloning. JoyVoice achieves top-tier results on both the Seed-TTS-Eval Benchmark and multi-speaker long-form conversational voice cloning tasks, demonstrating superior audio quality and generalization. It achieves significant improvements in prosodic continuity for long-form speech, rhythm richness in multi-speaker conversations, paralinguistic naturalness, besides superior intelligibility. We encourage readers to listen to the demo at https://jea-speech.github.io/JoyVoice
Abstract:Magnetic resonance imaging (MRI) is a cornerstone of modern clinical diagnosis, offering unparalleled soft-tissue contrast without ionizing radiation. However, prolonged scan times remain a major barrier to patient throughput and comfort. Existing accelerated MRI techniques often struggle with two key challenges: (1) failure to effectively utilize inherent K-space prior information, leading to persistent aliasing artifacts from zero-filled inputs; and (2) contamination of target reconstruction quality by irrelevant information when employing multi-contrast fusion strategies. To overcome these challenges, we present MambaMDN, a dual-domain framework for multi-contrast MRI reconstruction. Our approach first employs fully-sampled reference K-space data to complete the undersampled target data, generating structurally aligned but modality-mixed inputs. Subsequently, we develop a Mamba-based modality disentanglement network to extract and remove reference-specific features from the mixed representation. Furthermore, we introduce an iterative refinement mechanism to progressively enhance reconstruction accuracy through repeated feature purification. Extensive experiments demonstrate that MambaMDN can significantly outperform existing multi-contrast reconstruction methods.
Abstract:Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
Abstract:Computer-generated holography (CGH) presents a transformative solution for near-eye displays in augmented and virtual reality. Recent advances in deep learning have greatly improved CGH in reconstructed quality and computational efficiency. However, deploying neural CGH pipelines directly on compact, eyeglass-style devices is hindered by stringent constraints on computation and energy consumption, while cloud offloading followed by transmission with natural image codecs often distorts phase information and requires high bandwidth to maintain reconstruction quality. Neural compression methods can reduce bandwidth but impose heavy neural decoders at the edge, increasing inference latency and hardware demand. In this work, we introduce JPEG-Inspired Cloud-Edge Holography, an efficient pipeline designed around a learnable transform codec that retains the block-structured and hardware-friendly nature of JPEG. Our system shifts all heavy neural processing to the cloud, while the edge device performs only lightweight decoding without any neural inference. To further improve throughput, we implement custom CUDA kernels for entropy coding on both cloud and edge. This design achieves a peak signal-to-noise ratio of 32.15 dB at $<$ 2 bits per pixel with decode latency as low as 4.2 ms. Both numerical simulations and optical experiments confirm the high reconstruction quality of the holograms. By aligning CGH with a codec that preserves JPEG's structural efficiency while extending it with learnable components, our framework enables low-latency, bandwidth-efficient hologram streaming on resource-constrained wearable devices-using only simple block-based decoding readily supported by modern system-on-chips, without requiring neural decoders or specialized hardware.
Abstract:Recent advances in Multimodal Large Language Models (MLLMs) have enabled their use as intelligent agents for smartphone operation. However, existing methods depend on the Android Debug Bridge (ADB) for data transmission and action execution, limiting their applicability to Android devices. In this work, we introduce the novel Embodied Smartphone Operation (ESO) task and present See-Control, a framework that enables smartphone operation via direct physical interaction with a low-DoF robotic arm, offering a platform-agnostic solution. See-Control comprises three key components: (1) an ESO benchmark with 155 tasks and corresponding evaluation metrics; (2) an MLLM-based embodied agent that generates robotic control commands without requiring ADB or system back-end access; and (3) a richly annotated dataset of operation episodes, offering valuable resources for future research. By bridging the gap between digital agents and the physical world, See-Control provides a concrete step toward enabling home robots to perform smartphone-dependent tasks in realistic environments.
Abstract:Existing state-of-the-art image tokenization methods leverage diverse semantic features from pre-trained vision models for additional supervision, to expand the distribution of latent representations and thereby improve the quality of image reconstruction and generation. These methods employ a locally supervised approach for semantic supervision, which limits the uniformity of semantic distribution. However, VA-VAE proves that a more uniform feature distribution yields better generation performance. In this work, we introduce a Global Perspective Tokenizer (GloTok), which utilizes global relational information to model a more uniform semantic distribution of tokenized features. Specifically, a codebook-wise histogram relation learning method is proposed to transfer the semantics, which are modeled by pre-trained models on the entire dataset, to the semantic codebook. Then, we design a residual learning module that recovers the fine-grained details to minimize the reconstruction error caused by quantization. Through the above design, GloTok delivers more uniformly distributed semantic latent representations, which facilitates the training of autoregressive (AR) models for generating high-quality images without requiring direct access to pre-trained models during the training process. Experiments on the standard ImageNet-1k benchmark clearly show that our proposed method achieves state-of-the-art reconstruction performance and generation quality.




Abstract:We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.