Abstract:As the utilization of language models in interdisciplinary, human-centered studies grow, the expectation of model capabilities continues to evolve. Beyond excelling at conventional tasks, models are recently expected to perform well on user-centric measurements involving confidence and human (dis)agreement -- factors that reflect subjective preferences. While modeling of subjectivity plays an essential role in cognitive science and has been extensively studied, it remains under-explored within the NLP community. In light of this gap, we explore how language models can harness subjectivity by conducting comprehensive experiments and analysis across various scenarios using both fine-tuned models and prompt-based large language models (LLMs). Our quantitative and qualitative experimental results indicate that existing post-hoc calibration approaches often fail to produce satisfactory results. However, our findings reveal that personality traits and demographical information are critical for measuring subjectivity. Furthermore, our in-depth analysis offers valuable insights for future research and development in the interdisciplinary studies of NLP and cognitive science.
Abstract:Theory-of-Mind (ToM), the ability to infer others' perceptions and mental states, is fundamental to human interaction but remains a challenging task for Large Language Models (LLMs). While existing ToM reasoning methods show promise with reasoning via perceptual perspective-taking, they often rely excessively on LLMs, reducing their efficiency and limiting their applicability to high-order ToM reasoning, which requires multi-hop reasoning about characters' beliefs. To address these issues, we present EnigmaToM, a novel neuro-symbolic framework that enhances ToM reasoning by integrating a Neural Knowledge Base of entity states (Enigma) for (1) a psychology-inspired iterative masking mechanism that facilitates accurate perspective-taking and (2) knowledge injection that elicits key entity information. Enigma generates structured representations of entity states, which construct spatial scene graphs -- leveraging spatial information as an inductive bias -- for belief tracking of various ToM orders and enhancing events with fine-grained entity state details. Experimental results on multiple benchmarks, including ToMi, HiToM, and FANToM, show that EnigmaToM significantly improves ToM reasoning across LLMs of varying sizes, particularly excelling in high-order reasoning scenarios.
Abstract:Large language models have recently pushed open domain question answering (ODQA) to new frontiers. However, prevailing retriever-reader pipelines often depend on multiple rounds of prompt level instructions, leading to high computational overhead, instability, and suboptimal retrieval coverage. In this paper, we propose EmbQA, an embedding-level framework that alleviates these shortcomings by enhancing both the retriever and the reader. Specifically, we refine query representations via lightweight linear layers under an unsupervised contrastive learning objective, thereby reordering retrieved passages to highlight those most likely to contain correct answers. Additionally, we introduce an exploratory embedding that broadens the model's latent semantic space to diversify candidate generation and employs an entropy-based selection mechanism to choose the most confident answer automatically. Extensive experiments across three open-source LLMs, three retrieval methods, and four ODQA benchmarks demonstrate that EmbQA substantially outperforms recent baselines in both accuracy and efficiency.
Abstract:With the rapid development of large language models (LLMs), LLM-as-a-judge has emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation. While previous studies have focused exclusively on single-context evaluation (e.g., discourse faithfulness or world factuality), real-world hallucinations typically involve mixed contexts, which remains inadequately evaluated. In this study, we use summarization as a representative task to comprehensively evaluate LLMs' capability in detecting mixed-context hallucinations, specifically distinguishing between factual and non-factual hallucinations. Through extensive experiments across direct generation and retrieval-based models of varying scales, our main observations are: (1) LLMs' intrinsic knowledge introduces inherent biases in hallucination evaluation; (2) These biases particularly impact the detection of factual hallucinations, yielding a significant performance bottleneck; (3) The fundamental challenge lies in effective knowledge utilization, balancing between LLMs' intrinsic knowledge and external context for accurate mixed-context hallucination evaluation.
Abstract:Personalized large language models (LLMs) aim to tailor their outputs to user preferences. Recent advances in parameter-efficient fine-tuning (PEFT) methods have highlighted the effectiveness of adapting population-level LLMs to personalized LLMs by fine-tuning user-specific parameters with user history. However, user data is typically sparse, making it challenging to adapt LLMs to specific user patterns. To address this challenge, we propose PROgressive PERsonalization (PROPER), a novel progressive learning framework inspired by meso-level theory in social science. PROPER bridges population-level and user-level models by grouping users based on preferences and adapting LLMs in stages. It combines a Mixture-of-Experts (MoE) structure with Low Ranked Adaptation (LoRA), using a user-aware router to assign users to appropriate groups automatically. Additionally, a LoRA-aware router is proposed to facilitate the integration of individual user LoRAs with group-level LoRAs. Experimental results show that PROPER significantly outperforms SOTA models across multiple tasks, demonstrating the effectiveness of our approach.
Abstract:Depression is a widespread mental health disorder, and clinical interviews are the gold standard for assessment. However, their reliance on scarce professionals highlights the need for automated detection. Current systems mainly employ black-box neural networks, which lack interpretability, which is crucial in mental health contexts. Some attempts to improve interpretability use post-hoc LLM generation but suffer from hallucination. To address these limitations, we propose RED, a Retrieval-augmented generation framework for Explainable depression Detection. RED retrieves evidence from clinical interview transcripts, providing explanations for predictions. Traditional query-based retrieval systems use a one-size-fits-all approach, which may not be optimal for depression detection, as user backgrounds and situations vary. We introduce a personalized query generation module that combines standard queries with user-specific background inferred by LLMs, tailoring retrieval to individual contexts. Additionally, to enhance LLM performance in social intelligence, we augment LLMs by retrieving relevant knowledge from a social intelligence datastore using an event-centric retriever. Experimental results on the real-world benchmark demonstrate RED's effectiveness compared to neural networks and LLM-based baselines.
Abstract:Chain-of-Thought (CoT) enhances Large Language Models (LLMs) by enabling step-by-step reasoning in natural language. However, the language space may be suboptimal for reasoning. While implicit CoT methods attempt to enable reasoning without explicit CoT tokens, they have consistently lagged behind explicit CoT method in task performance. We propose CODI (Continuous Chain-of-Thought via Self-Distillation), a novel framework that distills CoT into a continuous space, where a shared model acts as both teacher and student, jointly learning explicit and implicit CoT while aligning their hidden activation on the token generating the final answer. CODI is the first implicit CoT method to match explicit CoT's performance on GSM8k while achieving 3.1x compression, surpassing the previous state-of-the-art by 28.2% in accuracy. Furthermore, CODI demonstrates scalability, robustness, and generalizability to more complex CoT datasets. Additionally, CODI retains interpretability by decoding its continuous thoughts, making its reasoning process transparent. Our findings establish implicit CoT as not only a more efficient but a powerful alternative to explicit CoT.
Abstract:Large Language Models (LLMs) often struggle with complex reasoning scenarios. While preference optimization methods enhance reasoning performance through training, they often lack transparency in why one reasoning outcome is preferred over another. Verbal reflection techniques improve explainability but are limited in LLMs' critique and refinement capacity. To address these challenges, we introduce a contrastive reflection synthesis pipeline that enhances the accuracy and depth of LLM-generated reflections. We further propose a dual-model reasoning framework within a verbal reinforcement learning paradigm, decoupling inference-time self-reflection into specialized, trained models for reasoning critique and refinement. Extensive experiments show that our framework outperforms traditional preference optimization methods across all evaluation metrics. Our findings also show that "two heads are better than one", demonstrating that a collaborative Reasoner-Critic model achieves superior reasoning performance and transparency, compared to single-model approaches.
Abstract:Medical question answering requires extensive access to specialized conceptual knowledge. The current paradigm, Retrieval-Augmented Generation (RAG), acquires expertise medical knowledge through large-scale corpus retrieval and uses this knowledge to guide a general-purpose large language model (LLM) for generating answers. However, existing retrieval approaches often overlook the importance of factual knowledge, which limits the relevance of retrieved conceptual knowledge and restricts its applicability in real-world scenarios, such as clinical decision-making based on Electronic Health Records (EHRs). This paper introduces RGAR, a recurrence generation-augmented retrieval framework that retrieves both relevant factual and conceptual knowledge from dual sources (i.e., EHRs and the corpus), allowing them to interact and refine each another. Through extensive evaluation across three factual-aware medical question answering benchmarks, RGAR establishes a new state-of-the-art performance among medical RAG systems. Notably, the Llama-3.1-8B-Instruct model with RGAR surpasses the considerably larger, RAG-enhanced GPT-3.5. Our findings demonstrate the benefit of extracting factual knowledge for retrieval, which consistently yields improved generation quality.
Abstract:Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.