Abstract:In the past, Retrieval-Augmented Generation (RAG) methods split text into chunks to enable language models to handle long documents. Recent tree-based RAG methods are able to retrieve detailed information while preserving global context. However, with the advent of more powerful LLMs, such as Llama 3.1, which offer better comprehension and support for longer inputs, we found that even recent tree-based RAG methods perform worse than directly feeding the entire document into Llama 3.1, although RAG methods still hold an advantage in reducing computational costs. In this paper, we propose a new retrieval method, called LLM-Guided Dynamic Progress Control with Hierarchical Weighted Graph (GARLIC), which outperforms previous state-of-the-art baselines, including Llama 3.1, while retaining the computational efficiency of RAG methods. Our method introduces several improvements: (1) Rather than using a tree structure, we construct a Hierarchical Weighted Directed Acyclic Graph with many-to-many summarization, where the graph edges are derived from attention mechanisms, and each node focuses on a single event or very few events. (2) We introduce a novel retrieval method that leverages the attention weights of LLMs rather than dense embedding similarity. Our method allows for searching the graph along multiple paths and can terminate at any depth. (3) We use the LLM to control the retrieval process, enabling it to dynamically adjust the amount and depth of information retrieved for different queries. Experimental results show that our method outperforms previous state-of-the-art baselines, including Llama 3.1, on two single-document and two multi-document QA datasets, while maintaining similar computational complexity to traditional RAG methods.
Abstract:Multimodal affective computing (MAC) has garnered increasing attention due to its broad applications in analyzing human behaviors and intentions, especially in text-dominated multimodal affective computing field. This survey presents the recent trends of multimodal affective computing from NLP perspective through four hot tasks: multimodal sentiment analysis, multimodal emotion recognition in conversation, multimodal aspect-based sentiment analysis and multimodal multi-label emotion recognition. The goal of this survey is to explore the current landscape of multimodal affective research, identify development trends, and highlight the similarities and differences across various tasks, offering a comprehensive report on the recent progress in multimodal affective computing from an NLP perspective. This survey covers the formalization of tasks, provides an overview of relevant works, describes benchmark datasets, and details the evaluation metrics for each task. Additionally, it briefly discusses research in multimodal affective computing involving facial expressions, acoustic signals, physiological signals, and emotion causes. Additionally, we discuss the technical approaches, challenges, and future directions in multimodal affective computing. To support further research, we released a repository that compiles related works in multimodal affective computing, providing detailed resources and references for the community.
Abstract:The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks. Traditional metrics like Exact Match and BertScore poorly reflect model performance, so we trained evaluation models to approximate human evaluation, achieving high agreement. We used them to perform Reinforcement Learning with extraction models to align them with human preference, prioritising semantic understanding. We successfully explored our approach through multiple datasets, including transferring an evaluator trained on one dataset to another as a way to decrease the reliance on human-annotated data. In that vein, we also propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model while still achieving high performance in training an RL model. Our code is available at https://github.com/oyarsa/event_extraction/tree/causal-event-extraction.
Abstract:To better interpret the intrinsic mechanism of large language models (LLMs), recent studies focus on monosemanticity on its basic units. A monosemantic neuron is dedicated to a single and specific concept, which forms a one-to-one correlation between neurons and concepts. Despite extensive research in monosemanticity probing, it remains unclear whether monosemanticity is beneficial or harmful to model capacity. To explore this question, we revisit monosemanticity from the feature decorrelation perspective and advocate for its encouragement. We experimentally observe that the current conclusion by wang2024learning, which suggests that decreasing monosemanticity enhances model performance, does not hold when the model changes. Instead, we demonstrate that monosemanticity consistently exhibits a positive correlation with model capacity, in the preference alignment process. Consequently, we apply feature correlation as a proxy for monosemanticity and incorporate a feature decorrelation regularizer into the dynamic preference optimization process. The experiments show that our method not only enhances representation diversity and activation sparsity but also improves preference alignment performance.
Abstract:To seek reliable information sources for news events, we introduce a novel task of expert recommendation, which aims to identify trustworthy sources based on their previously quoted statements. To achieve this, we built a novel dataset, called NewsQuote, consisting of 23,571 quote-speaker pairs sourced from a collection of news articles. We formulate the recommendation task as the retrieval of experts based on their likelihood of being associated with a given query. We also propose a multi-layer ranking framework employing Large Language Models to improve the recommendation performance. Our results show that employing an in-context learning based LLM ranker and a multi-layer ranking-based filter significantly improve both the predictive quality and behavioural quality of the recommender system.
Abstract:This paper concerns the problem of aligning samples from large language models to human preferences using best-of-$n$ sampling, where we draw $n$ samples, rank them, and return the best one. We consider two fundamental problems. First: what is the relationship between best-of-$n$ and approaches to alignment that train LLMs to output samples with a high expected reward (e.g., RLHF or DPO)? To answer this, we embed both the best-of-$n$ distribution and the sampling distributions learned by alignment procedures in a common class of tiltings of the base LLM distribution. We then show that, within this class, best-of-$n$ is essentially optimal in terms of the trade-off between win-rate against the base model vs KL distance from the base model. That is, best-of-$n$ is the best choice of alignment distribution if the goal is to maximize win rate. However, best-of-$n$ requires drawing $n$ samples for each inference, a substantial cost. To avoid this, the second problem we consider is how to fine-tune a LLM to mimic the best-of-$n$ sampling distribution. We derive BoNBoN Alignment to achieve this by exploiting the special structure of the best-of-$n$ distribution. Experiments show that BoNBoN alignment yields substantial improvements in producing a model that is preferred to the base policy while minimally affecting off-target aspects.
Abstract:Recent advancements in Large Language Models (LLMs) have enhanced the efficacy of agent communication and social interactions. Despite these advancements, building LLM-based agents for reasoning in dynamic environments involving competition and collaboration remains challenging due to the limitations of informed graph-based search methods. We propose PLAYER*, a novel framework based on an anytime sampling-based planner, which utilises sensors and pruners to enable a purely question-driven searching framework for complex reasoning tasks. We also introduce a quantifiable evaluation method using multiple-choice questions and construct the WellPlay dataset with 1,482 QA pairs. Experiments demonstrate PLAYER*'s efficiency and performance enhancements compared to existing methods in complex, dynamic environments with quantifiable results.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is commonly utilized to improve the alignment of Large Language Models (LLMs) with human preferences. Given the evolving nature of human preferences, continual alignment becomes more crucial and practical in comparison to traditional static alignment. Nevertheless, making RLHF compatible with Continual Learning (CL) is challenging due to its complex process. Meanwhile, directly learning new human preferences may lead to Catastrophic Forgetting (CF) of historical preferences, resulting in helpless or harmful outputs. To overcome these challenges, we propose the Continual Optimal Policy Regularization (COPR) method, which draws inspiration from the optimal policy theory. COPR utilizes a sampling distribution as a demonstration and regularization constraints for CL. It adopts the Lagrangian Duality (LD) method to dynamically regularize the current policy based on the historically optimal policy, which prevents CF and avoids over-emphasizing unbalanced objectives. We also provide formal proof for the learnability of COPR. The experimental results show that COPR outperforms strong CL baselines on our proposed benchmark, in terms of reward-based, GPT-4 evaluations and human assessment. Furthermore, we validate the robustness of COPR under various CL settings, including different backbones, replay memory sizes, and learning orders.
Abstract:Counterfactual generation lies at the core of various machine learning tasks, including image translation and controllable text generation. This generation process usually requires the identification of the disentangled latent representations, such as content and style, that underlie the observed data. However, it becomes more challenging when faced with a scarcity of paired data and labeling information. Existing disentangled methods crucially rely on oversimplified assumptions, such as assuming independent content and style variables, to identify the latent variables, even though such assumptions may not hold for complex data distributions. For instance, food reviews tend to involve words like tasty, whereas movie reviews commonly contain words such as thrilling for the same positive sentiment. This problem is exacerbated when data are sampled from multiple domains since the dependence between content and style may vary significantly over domains. In this work, we tackle the domain-varying dependence between the content and the style variables inherent in the counterfactual generation task. We provide identification guarantees for such latent-variable models by leveraging the relative sparsity of the influences from different latent variables. Our theoretical insights enable the development of a doMain AdapTive counTerfactual gEneration model, called (MATTE). Our theoretically grounded framework achieves state-of-the-art performance in unsupervised style transfer tasks, where neither paired data nor style labels are utilized, across four large-scale datasets. Code is available at https://github.com/hanqi-qi/Matte.git
Abstract:In-context learning has become a popular paradigm in natural language processing. However, its performance can be significantly influenced by the order of in-context demonstration examples. In this paper, we found that causal language models (CausalLMs) are more sensitive to this order compared to prefix language models (PrefixLMs). We attribute this phenomenon to the auto-regressive attention masks within CausalLMs, which restrict each token from accessing information from subsequent tokens. This results in different receptive fields for samples at different positions, thereby leading to representation disparities across positions. To tackle this challenge, we introduce an unsupervised fine-tuning method, termed the Information-Augmented and Consistency-Enhanced approach. This approach utilizes contrastive learning to align representations of in-context examples across different positions and introduces a consistency loss to ensure similar representations for inputs with different permutations. This enhances the model's predictive consistency across permutations. Experimental results on four benchmarks suggest that our proposed method can reduce the sensitivity to the order of in-context examples and exhibit robust generalizability, particularly when demonstrations are sourced from a pool different from that used in the training phase, or when the number of in-context examples differs from what is used during training.