Abstract:In Biomedical Natural Language Processing (BioNLP) tasks, such as Relation Extraction, Named Entity Recognition, and Text Classification, the scarcity of high-quality data remains a significant challenge. This limitation poisons large language models to correctly understand relationships between biological entities, such as molecules and diseases, or drug interactions, and further results in potential misinterpretation of biomedical documents. To address this issue, current approaches generally adopt the Synthetic Data Augmentation method which involves similarity computation followed by word replacement, but counterfactual data are usually generated. As a result, these methods disrupt meaningful word sets or produce sentences with meanings that deviate substantially from the original context, rendering them ineffective in improving model performance. To this end, this paper proposes a biomedical-dedicated rationale-based synthetic data augmentation method. Beyond the naive lexicon similarity, specific bio-relation similarity is measured to hold the augmented instance having a strong correlation with bio-relation instead of simply increasing the diversity of augmented data. Moreover, a multi-agents-involved reflection mechanism helps the model iteratively distinguish different usage of similar entities to escape falling into the mis-replace trap. We evaluate our method on the BLURB and BigBIO benchmark, which includes 9 common datasets spanning four major BioNLP tasks. Our experimental results demonstrate consistent performance improvements across all tasks, highlighting the effectiveness of our approach in addressing the challenges associated with data scarcity and enhancing the overall performance of biomedical NLP models.
Abstract:Existing large language models (LLMs) have shown remarkable progress in dialogue systems. However, many approaches still overlook the fundamental role of events throughout multi-turn interactions, leading to \textbf{incomplete context tracking}. Without tracking these events, dialogue systems often lose coherence and miss subtle shifts in user intent, causing disjointed responses. To bridge this gap, we present \textbf{EventWeave}, an event-centric framework that identifies and updates both core and supporting events as the conversation unfolds. Specifically, we organize these events into a dynamic event graph, which represents the interplay between \textbf{core events} that shape the primary idea and \textbf{supporting events} that provide critical context during the whole dialogue. By leveraging this dynamic graph, EventWeave helps models focus on the most relevant events when generating responses, thus avoiding repeated visits of the entire dialogue history. Experimental results on two benchmark datasets show that EventWeave improves response quality and event relevance without fine-tuning.
Abstract:Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
Abstract:Real estate appraisal has undergone a significant transition from manual to automated valuation and is entering a new phase of evolution. Leveraging comprehensive attention to various data sources, a novel approach to automated valuation, multimodal machine learning, has taken shape. This approach integrates multimodal data to deeply explore the diverse factors influencing housing prices. Furthermore, multimodal machine learning significantly outperforms single-modality or fewer-modality approaches in terms of prediction accuracy, with enhanced interpretability. However, systematic and comprehensive survey work on the application in the real estate domain is still lacking. In this survey, we aim to bridge this gap by reviewing the research efforts. We begin by reviewing the background of real estate appraisal and propose two research questions from the perspecve of performance and fusion aimed at improving the accuracy of appraisal results. Subsequently, we explain the concept of multimodal machine learning and provide a comprehensive classification and definition of modalities used in real estate appraisal for the first time. To ensure clarity, we explore works related to data and techniques, along with their evaluation methods, under the framework of these two research questions. Furthermore, specific application domains are summarized. Finally, we present insights into future research directions including multimodal complementarity, technology and modality contribution.
Abstract:This paper introduces Unity RL Playground, an open-source reinforcement learning framework built on top of Unity ML-Agents. Unity RL Playground automates the process of training mobile robots to perform various locomotion tasks such as walking, running, and jumping in simulation, with the potential for seamless transfer to real hardware. Key features include one-click training for imported robot models, universal compatibility with diverse robot configurations, multi-mode motion learning capabilities, and extreme performance testing to aid in robot design optimization and morphological evolution. The attached video can be found at https://linqi-ye.github.io/video/iros25.mp4 and the code is coming soon.
Abstract:Robotic grasping in scenes with transparent and specular objects presents great challenges for methods relying on accurate depth information. In this paper, we introduce NeuGrasp, a neural surface reconstruction method that leverages background priors for material-agnostic grasp detection. NeuGrasp integrates transformers and global prior volumes to aggregate multi-view features with spatial encoding, enabling robust surface reconstruction in narrow and sparse viewing conditions. By focusing on foreground objects through residual feature enhancement and refining spatial perception with an occupancy-prior volume, NeuGrasp excels in handling objects with transparent and specular surfaces. Extensive experiments in both simulated and real-world scenarios show that NeuGrasp outperforms state-of-the-art methods in grasping while maintaining comparable reconstruction quality. More details are available at https://neugrasp.github.io/.
Abstract:The in-context learning (ICL) capability of large language models (LLMs) enables them to perform challenging tasks using provided demonstrations. However, ICL is highly sensitive to the ordering of demonstrations, leading to instability in predictions. This paper shows that this vulnerability can be exploited to design a natural attack - difficult for model providers to detect - that achieves nearly 80% success rate on LLaMA-3 by simply permuting the demonstrations. Existing mitigation methods primarily rely on post-processing and fail to enhance the model's inherent robustness to input permutations, raising concerns about safety and reliability of LLMs. To address this issue, we propose Permutation-resilient learning (PEARL), a novel framework based on distributionally robust optimization (DRO), which optimizes model performance against the worst-case input permutation. Specifically, PEARL consists of a permutation-proposal network (P-Net) and the LLM. The P-Net generates the most challenging permutations by treating it as an optimal transport problem, which is solved using an entropy-constrained Sinkhorn algorithm. Through minimax optimization, the P-Net and the LLM iteratively optimize against each other, progressively improving the LLM's robustness. Experiments on synthetic pre-training and real-world instruction tuning tasks demonstrate that PEARL effectively mitigates permutation attacks and enhances performance. Notably, despite being trained on fewer shots and shorter contexts, PEARL achieves performance gains of up to 40% when scaled to many-shot and long-context scenarios, highlighting its efficiency and generalization capabilities.
Abstract:Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Se\~norita-2M, a high-quality video editing dataset. Se\~norita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita.github.io.
Abstract:Exploration in sparse reward environments remains a significant challenge in reinforcement learning, particularly in Contextual Markov Decision Processes (CMDPs), where environments differ across episodes. Existing episodic intrinsic motivation methods for CMDPs primarily rely on count-based approaches, which are ineffective in large state spaces, or on similarity-based methods that lack appropriate metrics for state comparison. To address these shortcomings, we propose Episodic Novelty Through Temporal Distance (ETD), a novel approach that introduces temporal distance as a robust metric for state similarity and intrinsic reward computation. By employing contrastive learning, ETD accurately estimates temporal distances and derives intrinsic rewards based on the novelty of states within the current episode. Extensive experiments on various benchmark tasks demonstrate that ETD significantly outperforms state-of-the-art methods, highlighting its effectiveness in enhancing exploration in sparse reward CMDPs.
Abstract:Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving (AD) systems. Given that these long-tail events are extremely rare in real-world traffic data, there is a growing body of work dedicated to the automatic traffic scenario generation. However, nearly all existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events, transforming normal traffic flow into accident-prone situations directly. In other words, safety-critical traffic scenario generation is hindsight and not applicable to newly encountered and open-ended traffic events.In this paper, we propose the Deep Motion Factorization (DeepMF) framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation. DeepMF casts safety-critical traffic simulation as a Bayesian factorization that includes the assignment of hazardous traffic participants, the motion prediction of selected opponents, the reaction estimation of autonomous vehicle (AV) and the probability estimation of the accident occur. All the aforementioned terms are calculated using decoupled deep neural networks, with inputs limited to the current observation and historical states. Consequently, DeepMF can effectively and efficiently simulate safety-critical traffic scenarios at any triggered time and for any duration by maximizing the compounded posterior probability of traffic risk. Extensive experiments demonstrate that DeepMF excels in terms of risk management, flexibility, and diversity, showcasing outstanding performance in simulating a wide range of realistic, high-risk traffic scenarios.