Abstract:Open-source Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language understanding and generation, leading to widespread adoption across various domains. However, their increasing model sizes render local deployment impractical for individual users, pushing many to rely on computing service providers for inference through a blackbox API. This reliance introduces a new risk: a computing provider may stealthily substitute the requested LLM with a smaller, less capable model without consent from users, thereby delivering inferior outputs while benefiting from cost savings. In this paper, we formalize the problem of verifiable inference for LLMs. Existing verifiable computing solutions based on cryptographic or game-theoretic techniques are either computationally uneconomical or rest on strong assumptions. We introduce SVIP, a secret-based verifiable LLM inference protocol that leverages intermediate outputs from LLM as unique model identifiers. By training a proxy task on these outputs and requiring the computing provider to return both the generated text and the processed intermediate outputs, users can reliably verify whether the computing provider is acting honestly. In addition, the integration of a secret mechanism further enhances the security of our protocol. We thoroughly analyze our protocol under multiple strong and adaptive adversarial scenarios. Our extensive experiments demonstrate that SVIP is accurate, generalizable, computationally efficient, and resistant to various attacks. Notably, SVIP achieves false negative rates below 5% and false positive rates below 3%, while requiring less than 0.01 seconds per query for verification.
Abstract:Given the damping factor $\alpha$ and precision tolerance $\epsilon$, \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by $\Theta(1/(\alpha\epsilon))$ independent of the graph size. Recently, \citet{fountoulakis2022open} asked whether faster local algorithms could be developed using $\tilde{O}(1/(\sqrt{\alpha}\epsilon))$ operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of \textit{whether standard iterative solvers can be effectively localized}. We propose to use the \textit{locally evolving set process}, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let $\overline{\operatorname{vol}}{ (S_t)}$ and $\overline{\gamma}_{t}$ be the running average of volume and the residual ratio of active nodes $\textstyle S_{t}$ during the process. We show $\overline{\operatorname{vol}}{ (S_t)}/\overline{\gamma}_{t} \leq 1/\epsilon$ and prove APPR admits a new runtime bound $\tilde{O}(\overline{\operatorname{vol}}(S_t)/(\alpha\overline{\gamma}_{t}))$ mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is $\Theta(\sqrt{\alpha})$, then there exists $c \in (0,2)$ such that the local Chebyshev method has runtime $\tilde{O}(\overline{\operatorname{vol}}(S_{t})/(\sqrt{\alpha}(2-c)))$ without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.
Abstract:Recent studies have shown that many nonconvex machine learning problems meet a so-called generalized-smooth condition that extends beyond traditional smooth nonconvex optimization. However, the existing algorithms designed for generalized-smooth nonconvex optimization encounter significant limitations in both their design and convergence analysis. In this work, we first study deterministic generalized-smooth nonconvex optimization and analyze the convergence of normalized gradient descent under the generalized Polyak-Lojasiewicz condition. Our results provide a comprehensive understanding of the interplay between gradient normalization and function geometry. Then, for stochastic generalized-smooth nonconvex optimization, we propose an independently-normalized stochastic gradient descent algorithm, which leverages independent sampling, gradient normalization and clipping to achieve an $\mathcal{O}(\epsilon^{-4})$ sample complexity under relaxed assumptions. Experiments demonstrate the fast convergence of our algorithm.
Abstract:Continual learning (CL) aims to train models that can sequentially learn new tasks without forgetting previous tasks' knowledge. Although previous works observed that pre-training can benefit CL, it remains unclear whether a pre-trained model with higher downstream capacity also performs better in CL. In this paper, we observe that pre-trained models may allocate high attention scores to some 'sink' tokens, such as [SEP] tokens, which are ubiquitous across various tasks. Such attention sinks may lead to models' over-smoothing in single-task learning and interference in sequential tasks' learning, which may compromise the models' CL performance despite their high pre-trained capabilities. To reduce these effects, we propose a pre-scaling mechanism that encourages attention diversity across all tokens. Specifically, it first scales the task's attention to the non-sink tokens in a probing stage, and then fine-tunes the model with scaling. Experiments show that pre-scaling yields substantial improvements in CL without experience replay, or progressively storing parameters from previous tasks.
Abstract:Enforcing state-wise safety constraints is critical for the application of reinforcement learning (RL) in real-world problems, such as autonomous driving and robot manipulation. However, existing safe RL methods only enforce state-wise constraints in expectation or enforce hard state-wise constraints with strong assumptions. The former does not exclude the probability of safety violations, while the latter is impractical. Our insight is that although it is intractable to guarantee hard state-wise constraints in a model-free setting, we can enforce state-wise safety with high probability while excluding strong assumptions. To accomplish the goal, we propose Absolute State-wise Constrained Policy Optimization (ASCPO), a novel general-purpose policy search algorithm that guarantees high-probability state-wise constraint satisfaction for stochastic systems. We demonstrate the effectiveness of our approach by training neural network policies for extensive robot locomotion tasks, where the agent must adhere to various state-wise safety constraints. Our results show that ASCPO significantly outperforms existing methods in handling state-wise constraints across challenging continuous control tasks, highlighting its potential for real-world applications.
Abstract:Images produced by diffusion models are increasingly popular in digital artwork and visual marketing. However, such generated images might replicate content from existing ones and pose the challenge of content originality. Existing Image Copy Detection (ICD) models, though accurate in detecting hand-crafted replicas, overlook the challenge from diffusion models. This motivates us to introduce ICDiff, the first ICD specialized for diffusion models. To this end, we construct a Diffusion-Replication (D-Rep) dataset and correspondingly propose a novel deep embedding method. D-Rep uses a state-of-the-art diffusion model (Stable Diffusion V1.5) to generate 40, 000 image-replica pairs, which are manually annotated into 6 replication levels ranging from 0 (no replication) to 5 (total replication). Our method, PDF-Embedding, transforms the replication level of each image-replica pair into a probability density function (PDF) as the supervision signal. The intuition is that the probability of neighboring replication levels should be continuous and smooth. Experimental results show that PDF-Embedding surpasses protocol-driven methods and non-PDF choices on the D-Rep test set. Moreover, by utilizing PDF-Embedding, we find that the replication ratios of well-known diffusion models against an open-source gallery range from 10% to 20%.
Abstract:Most existing multimodality methods use separate backbones for autoregression-based discrete text generation and diffusion-based continuous visual generation, or the same backbone by discretizing the visual data to use autoregression for both text and visual generation. In this paper, we propose to study a simple idea: share one transformer for both autoregression and diffusion. The feasibility comes from two main aspects: (i) Transformer is successfully applied to diffusion for visual generation, and (ii) transformer training for autoregression and diffusion is very similar, and the difference merely lies in that diffusion uses bidirectional attention mask and autoregression uses causal attention mask. Experimental results show that our approach achieves comparable image generation performance to current state-of-the-art methods as well as maintains the text generation capability. The project is publicly available at https://monoformer.github.io/.
Abstract:Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna over a specific area of interest to achieve higher spatial resolution imaging. In this paper, we aim to investigate the realization of SAR imaging for a stationary radar system with the assistance of active reconfigurable intelligent surface (ARIS) mounted on an unmanned aerial vehicle (UAV). As the UAV moves along the stationary trajectory, the ARIS can not only build a high-quality virtual line-of-sight (LoS) propagation path, but its mobility can also effectively create a much larger virtual aperture, which can be utilized to realize a SAR system. In this paper, we first present a range-Doppler (RD) imaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR system. Then, to further improve the SAR imaging performance, we attempt to optimize the reflection coefficients of ARIS to maximize the signal-to-noise ratio (SNR) at the stationary radar receiver under the constraints of ARIS maximum power and amplification factor. An effective algorithm based on fractional programming (FP) and majorization minimization (MM) methods is developed to solve the resulting non-convex problem. Simulation results validate the effectiveness of ARIS-assisted SAR imaging and our proposed RD imaging and ARIS optimization algorithms.
Abstract:Transformers have revolutionized the object detection landscape by introducing DETRs, acclaimed for their simplicity and efficacy. Despite their advantages, the substantial size of these models poses significant challenges for practical deployment, particularly in resource-constrained environments. This paper addresses the challenge of compressing DETR by leveraging knowledge distillation, a technique that holds promise for maintaining model performance while reducing size. A critical aspect of DETRs' performance is their reliance on queries to interpret object representations accurately. Traditional distillation methods often focus exclusively on positive queries, identified through bipartite matching, neglecting the rich information present in hard-negative queries. Our visual analysis indicates that hard-negative queries, focusing on foreground elements, are crucial for enhancing distillation outcomes. To this end, we introduce a novel Group Query Selection strategy, which diverges from traditional query selection in DETR distillation by segmenting queries based on their Generalized Intersection over Union (GIoU) with ground truth objects, thereby uncovering valuable hard-negative queries for distillation. Furthermore, we present the Knowledge Distillation via Query Selection for DETR (QSKD) framework, which incorporates Attention-Guided Feature Distillation (AGFD) and Local Alignment Prediction Distillation (LAPD). These components optimize the distillation process by focusing on the most informative aspects of the teacher model's intermediate features and output. Our comprehensive experimental evaluation of the MS-COCO dataset demonstrates the effectiveness of our approach, significantly improving average precision (AP) across various DETR architectures without incurring substantial computational costs. Specifically, the AP of Conditional DETR ResNet-18 increased from 35.8 to 39.9.
Abstract:Data valuation has emerged as a powerful framework to quantify the contribution of each datum to the training of a particular machine learning model. However, it is crucial to recognize that the quality of various cells within a single data point can vary greatly in practice. For example, even in the case of an abnormal data point, not all cells are necessarily noisy. The single scalar valuation assigned by existing methods blurs the distinction between noisy and clean cells of a data point, thereby compromising the interpretability of the valuation. In this paper, we propose 2D-OOB, an out-of-bag estimation framework for jointly determining helpful (or detrimental) samples, as well as the particular cells that drive them. Our comprehensive experiments demonstrate that 2D-OOB achieves state-of-the-art performance across multiple use cases, while being exponentially faster. 2D-OOB excels in detecting and rectifying fine-grained outliers at the cell level, as well as localizing backdoor triggers in data poisoning attacks.