Abstract:Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment.
Abstract:Recent methodologies utilizing synthetic datasets have aimed to address inconsistent hallucinations in large language models (LLMs); however,these approaches are primarily tailored to specific tasks, limiting their generalizability. Inspired by the strong performance of code-trained models in logic-intensive domains, we propose a novel framework that leverages event-based text to generate corresponding code and employs cyclic training to transfer the logical consistency of code to natural language effectively. Our method significantly reduces inconsistent hallucinations across three leading LLMs and two categories of natural language tasks while maintaining overall performance. This framework effectively alleviates hallucinations without necessitating adaptation to downstream tasks, demonstrating generality and providing new perspectives to tackle the challenge of inconsistent hallucinations.
Abstract:Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 13 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code is available at https://embodiedbench.github.io.
Abstract:Expressive music performance rendering involves interpreting symbolic scores with variations in timing, dynamics, articulation, and instrument-specific techniques, resulting in performances that capture musical can emotional intent. We introduce RenderBox, a unified framework for text-and-score controlled audio performance generation across multiple instruments, applying coarse-level controls through natural language descriptions and granular-level controls using music scores. Based on a diffusion transformer architecture and cross-attention joint conditioning, we propose a curriculum-based paradigm that trains from plain synthesis to expressive performance, gradually incorporating controllable factors such as speed, mistakes, and style diversity. RenderBox achieves high performance compared to baseline models across key metrics such as FAD and CLAP, and also tempo and pitch accuracy under different prompting tasks. Subjective evaluation further demonstrates that RenderBox is able to generate controllable expressive performances that sound natural and musically engaging, aligning well with prompts and intent.
Abstract:Utilizing a spectral dictionary learned from a couple of similar-scene multi- and hyperspectral image, it is possible to reconstruct a desired hyperspectral image only with one single multispectral image. However, the differences between the similar scene and the desired hyperspectral image make it difficult to directly apply the spectral dictionary from the training domain to the task domain. To this end, a compensation matrix based dictionary transfer method for the similar-scene multispectral image spectral super-resolution is proposed in this paper, trying to reconstruct a more accurate high spatial resolution hyperspectral image. Specifically, a spectral dictionary transfer scheme is established by using a compensation matrix with similarity constraint, to transfer the spectral dictionary learned in the training domain to the spectral super-resolution domain. Subsequently, the sparse coefficient matrix is optimized under sparse and low-rank constraints. Experimental results on two AVIRIS datasets from different scenes indicate that, the proposed method outperforms other related SOTA methods.
Abstract:Recently, cutting-plane methods such as GCP-CROWN have been explored to enhance neural network verifiers and made significant advances. However, GCP-CROWN currently relies on generic cutting planes (cuts) generated from external mixed integer programming (MIP) solvers. Due to the poor scalability of MIP solvers, large neural networks cannot benefit from these cutting planes. In this paper, we exploit the structure of the neural network verification problem to generate efficient and scalable cutting planes specific for this problem setting. We propose a novel approach, Branch-and-bound Inferred Cuts with COnstraint Strengthening (BICCOS), which leverages the logical relationships of neurons within verified subproblems in the branch-and-bound search tree, and we introduce cuts that preclude these relationships in other subproblems. We develop a mechanism that assigns influence scores to neurons in each path to allow the strengthening of these cuts. Furthermore, we design a multi-tree search technique to identify more cuts, effectively narrowing the search space and accelerating the BaB algorithm. Our results demonstrate that BICCOS can generate hundreds of useful cuts during the branch-and-bound process and consistently increase the number of verifiable instances compared to other state-of-the-art neural network verifiers on a wide range of benchmarks, including large networks that previous cutting plane methods could not scale to. BICCOS is part of the $\alpha,\beta$-CROWN verifier, the VNN-COMP 2024 winner. The code is available at http://github.com/Lemutisme/BICCOS .
Abstract:Simulation is critical for safety evaluation in autonomous driving, particularly in capturing complex interactive behaviors. However, generating realistic and controllable traffic scenarios in long-tail situations remains a significant challenge. Existing generative models suffer from the conflicting objective between user-defined controllability and realism constraints, which is amplified in safety-critical contexts. In this work, we introduce the Causal Compositional Diffusion Model (CCDiff), a structure-guided diffusion framework to address these challenges. We first formulate the learning of controllable and realistic closed-loop simulation as a constrained optimization problem. Then, CCDiff maximizes controllability while adhering to realism by automatically identifying and injecting causal structures directly into the diffusion process, providing structured guidance to enhance both realism and controllability. Through rigorous evaluations on benchmark datasets and in a closed-loop simulator, CCDiff demonstrates substantial gains over state-of-the-art approaches in generating realistic and user-preferred trajectories. Our results show CCDiff's effectiveness in extracting and leveraging causal structures, showing improved closed-loop performance based on key metrics such as collision rate, off-road rate, FDE, and comfort.
Abstract:Neural-network-based dynamics models learned from observational data have shown strong predictive capabilities for scene dynamics in robotic manipulation tasks. However, their inherent non-linearity presents significant challenges for effective planning. Current planning methods, often dependent on extensive sampling or local gradient descent, struggle with long-horizon motion planning tasks involving complex contact events. In this paper, we present a GPU-accelerated branch-and-bound (BaB) framework for motion planning in manipulation tasks that require trajectory optimization over neural dynamics models. Our approach employs a specialized branching heuristics to divide the search space into subdomains, and applies a modified bound propagation method, inspired by the state-of-the-art neural network verifier alpha-beta-CROWN, to efficiently estimate objective bounds within these subdomains. The branching process guides planning effectively, while the bounding process strategically reduces the search space. Our framework achieves superior planning performance, generating high-quality state-action trajectories and surpassing existing methods in challenging, contact-rich manipulation tasks such as non-prehensile planar pushing with obstacles, object sorting, and rope routing in both simulated and real-world settings. Furthermore, our framework supports various neural network architectures, ranging from simple multilayer perceptrons to advanced graph neural dynamics models, and scales efficiently with different model sizes.
Abstract:Estimating the uncertainty of responses of Large Language Models~(LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization~(TFB), a novel framework that transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. We theoretically demonstrate that under mild conditions, this search process is equivalent to variational inference for the weights. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex training procedures. Code will be available at https://github.com/Wang-ML-Lab/bayesian-peft.
Abstract:In recent years, many neural network (NN) verifiers have been developed to formally verify certain properties of neural networks such as robustness. Although many benchmarks have been constructed to evaluate the performance of NN verifiers, they typically lack a ground-truth for hard instances where no current verifier can verify and no counterexample can be found, which makes it difficult to check the soundness of a new verifier if it claims to verify hard instances which no other verifier can do. We propose to develop a soundness benchmark for NN verification. Our benchmark contains instances with deliberately inserted counterexamples while we also try to hide the counterexamples from regular adversarial attacks which can be used for finding counterexamples. We design a training method to produce neural networks with such hidden counterexamples. Our benchmark aims to be used for testing the soundness of NN verifiers and identifying falsely claimed verifiability when it is known that hidden counterexamples exist. We systematically construct our benchmark and generate instances across diverse model architectures, activation functions, input sizes, and perturbation radii. We demonstrate that our benchmark successfully identifies bugs in state-of-the-art NN verifiers, as well as synthetic bugs, providing a crucial step toward enhancing the reliability of testing NN verifiers. Our code is available at https://github.com/MVP-Harry/SoundnessBench and our benchmark is available at https://huggingface.co/datasets/SoundnessBench/SoundnessBench.