Abstract:Recent advances in embodied AI highlight the potential of vision language models (VLMs) as agents capable of perception, reasoning, and interaction in complex environments. However, top-performing systems rely on large-scale models that are costly to deploy, while smaller VLMs lack the necessary knowledge and skills to succeed. To bridge this gap, we present \textit{Embodied Reasoning Agent (ERA)}, a two-stage framework that integrates prior knowledge learning and online reinforcement learning (RL). The first stage, \textit{Embodied Prior Learning}, distills foundational knowledge from three types of data: (1) Trajectory-Augmented Priors, which enrich existing trajectory data with structured reasoning generated by stronger models; (2) Environment-Anchored Priors, which provide in-environment knowledge and grounding supervision; and (3) External Knowledge Priors, which transfer general knowledge from out-of-environment datasets. In the second stage, we develop an online RL pipeline that builds on these priors to further enhance agent performance. To overcome the inherent challenges in agent RL, including long horizons, sparse rewards, and training instability, we introduce three key designs: self-summarization for context management, dense reward shaping, and turn-level policy optimization. Extensive experiments on both high-level planning (EB-ALFRED) and low-level control (EB-Manipulation) tasks demonstrate that ERA-3B surpasses both prompting-based large models and previous training-based baselines. Specifically, it achieves overall improvements of 8.4\% on EB-ALFRED and 19.4\% on EB-Manipulation over GPT-4o, and exhibits strong generalization to unseen tasks. Overall, ERA offers a practical path toward scalable embodied intelligence, providing methodological insights for future embodied AI systems.
Abstract:Existing digital mental wellness tools often overlook the nuanced emotional states underlying everyday challenges. For example, pre-sleep anxiety affects more than 1.5 billion people worldwide, yet current approaches remain largely static and "one-size-fits-all", failing to adapt to individual needs. In this work, we present EmoHeal, an end-to-end system that delivers personalized, three-stage supportive narratives. EmoHeal detects 27 fine-grained emotions from user text with a fine-tuned XLM-RoBERTa model, mapping them to musical parameters via a knowledge graph grounded in music therapy principles (GEMS, iso-principle). EmoHeal retrieves audiovisual content using the CLAMP3 model to guide users from their current state toward a calmer one ("match-guide-target"). A within-subjects study (N=40) demonstrated significant supportive effects, with participants reporting substantial mood improvement (M=4.12, p<0.001) and high perceived emotion recognition accuracy (M=4.05, p<0.001). A strong correlation between perceived accuracy and therapeutic outcome (r=0.72, p<0.001) validates our fine-grained approach. These findings establish the viability of theory-driven, emotion-aware digital wellness tools and provides a scalable AI blueprint for operationalizing music therapy principles.
Abstract:This paper presents an end-to-end pipeline for generating character-specific, emotion-aware speech from comics. The proposed system takes full comic volumes as input and produces speech aligned with each character's dialogue and emotional state. An image processing module performs character detection, text recognition, and emotion intensity recognition. A large language model performs dialogue attribution and emotion analysis by integrating visual information with the evolving plot context. Speech is synthesized through a text-to-speech model with distinct voice profiles tailored to each character and emotion. This work enables automated voiceover generation for comics, offering a step toward interactive and immersive comic reading experience.
Abstract:We investigate the capacity of Large Language Models (LLMs) for imaginative reasoning--the proactive construction, testing, and revision of hypotheses in information-sparse environments. Existing benchmarks, often static or focused on social deduction, fail to capture the dynamic, exploratory nature of this reasoning process. To address this gap, we introduce a comprehensive research framework based on the classic "Turtle Soup" game, integrating a benchmark, an agent, and an evaluation protocol. We present TurtleSoup-Bench, the first large-scale, bilingual, interactive benchmark for imaginative reasoning, comprising 800 turtle soup puzzles sourced from both the Internet and expert authors. We also propose Mosaic-Agent, a novel agent designed to assess LLMs' performance in this setting. To evaluate reasoning quality, we develop a multi-dimensional protocol measuring logical consistency, detail completion, and conclusion alignment. Experiments with leading LLMs reveal clear capability limits, common failure patterns, and a significant performance gap compared to humans. Our work offers new insights into LLMs' imaginative reasoning and establishes a foundation for future research on exploratory agent behavior.
Abstract:Deep reinforcement learning (RL) has achieved significant success, yet its application in real-world scenarios is often hindered by a lack of robustness to environmental uncertainties. To solve this challenge, some robust RL algorithms have been proposed, but most are limited to tabular settings. In this work, we propose Distributionally Robust Soft Actor-Critic (DR-SAC), a novel algorithm designed to enhance the robustness of the state-of-the-art Soft Actor-Critic (SAC) algorithm. DR-SAC aims to maximize the expected value with entropy against the worst possible transition model lying in an uncertainty set. A distributionally robust version of the soft policy iteration is derived with a convergence guarantee. For settings where nominal distributions are unknown, such as offline RL, a generative modeling approach is proposed to estimate the required nominal distributions from data. Furthermore, experimental results on a range of continuous control benchmark tasks demonstrate our algorithm achieves up to $9.8$ times the average reward of the SAC baseline under common perturbations. Additionally, compared with existing robust reinforcement learning algorithms, DR-SAC significantly improves computing efficiency and applicability to large-scale problems.
Abstract:Unlearning in large language models (LLMs) is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this, we propose GUARD-a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the "alignment" between the forget and retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended losses in retention. We provide rigorous theoretical guarantees that GUARD significantly enhances retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU benchmark across multiple LLM architectures demonstrate that GUARD substantially improves utility preservation while ensuring effective unlearning. Notably, GUARD reduces utility sacrifice on the Retain Set by up to 194.92% in terms of Truth Ratio when forgetting 10% of the training data.
Abstract:Neural network verifiers based on linear bound propagation scale impressively to massive models but can be surprisingly loose when neuron coupling is crucial. Conversely, semidefinite programming (SDP) verifiers capture inter-neuron coupling naturally, but their cubic complexity restricts them to only small models. In this paper, we propose SDP-CROWN, a novel hybrid verification framework that combines the tightness of SDP relaxations with the scalability of bound-propagation verifiers. At the core of SDP-CROWN is a new linear bound, derived via SDP principles, that explicitly captures $\ell_{2}$-norm-based inter-neuron coupling while adding only one extra parameter per layer. This bound can be integrated seamlessly into any linear bound-propagation pipeline, preserving the inherent scalability of such methods yet significantly improving tightness. In theory, we prove that our inter-neuron bound can be up to a factor of $\sqrt{n}$ tighter than traditional per-neuron bounds. In practice, when incorporated into the state-of-the-art $\alpha$-CROWN verifier, we observe markedly improved verification performance on large models with up to 65 thousand neurons and 2.47 million parameters, achieving tightness that approaches that of costly SDP-based methods.
Abstract:Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism that reuses recent rollouts, lowering per-step computation while maintaining stable updates. Extensive experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.
Abstract:This paper presents AlphaOne ($\alpha$1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. $\alpha$1 first introduces $\alpha$ moment, which represents the scaled thinking phase with a universal parameter $\alpha$. Within this scaled pre-$\alpha$ moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the $\alpha$ moment, $\alpha$1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate $\alpha$1's superior reasoning capability and efficiency. Project page: https://alphaone-project.github.io/
Abstract:Continual Learning with Pre-trained Models holds great promise for efficient adaptation across sequential tasks. However, most existing approaches freeze PTMs and rely on auxiliary modules like prompts or adapters, limiting model plasticity and leading to suboptimal generalization when facing significant distribution shifts. While full fine-tuning can improve adaptability, it risks disrupting crucial pre-trained knowledge. In this paper, we propose Mutual Information-guided Sparse Tuning (MIST), a plug-and-play method that selectively updates a small subset of PTM parameters, less than 5%, based on sensitivity to mutual information objectives. MIST enables effective task-specific adaptation while preserving generalization. To further reduce interference, we introduce strong sparsity regularization by randomly dropping gradients during tuning, resulting in fewer than 0.5% of parameters being updated per step. Applied before standard freeze-based methods, MIST consistently boosts performance across diverse continual learning benchmarks. Experiments show that integrating our method into multiple baselines yields significant performance gains. Our code is available at https://github.com/zhwhu/MIST.