Abstract:Estimating the uncertainty of responses of Large Language Models~(LLMs) remains a critical challenge. While recent Bayesian methods have demonstrated effectiveness in quantifying uncertainty through low-rank weight updates, they typically require complex fine-tuning or post-training procedures. In this paper, we propose Training-Free Bayesianization~(TFB), a novel framework that transforms existing off-the-shelf trained LoRA adapters into Bayesian ones without additional training. TFB systematically searches for the maximally acceptable level of variance in the weight posterior, constrained within a family of low-rank isotropic Gaussian distributions. We theoretically demonstrate that under mild conditions, this search process is equivalent to variational inference for the weights. Through comprehensive experiments, we show that TFB achieves superior uncertainty estimation and generalization compared to existing methods while eliminating the need for complex training procedures. Code will be available at https://github.com/Wang-ML-Lab/bayesian-peft.
Abstract:Recently, research on Text-Attributed Graphs (TAGs) has gained significant attention due to the prevalence of free-text node features in real-world applications and the advancements in Large Language Models (LLMs) that bolster TAG methodologies. However, current TAG approaches face two primary challenges: (i) Heavy reliance on label information and (ii) Limited cross-domain zero/few-shot transferability. These issues constrain the scaling of both data and model size, owing to high labor costs and scaling laws, complicating the development of graph foundation models with strong transferability. In this work, we propose the GraphCLIP framework to address these challenges by learning graph foundation models with strong cross-domain zero/few-shot transferability through a self-supervised contrastive graph-summary pretraining method. Specifically, we generate and curate large-scale graph-summary pair data with the assistance of LLMs, and introduce a novel graph-summary pretraining method, combined with invariant learning, to enhance graph foundation models with strong cross-domain zero-shot transferability. For few-shot learning, we propose a novel graph prompt tuning technique aligned with our pretraining objective to mitigate catastrophic forgetting and minimize learning costs. Extensive experiments show the superiority of GraphCLIP in both zero-shot and few-shot settings, while evaluations across various downstream tasks confirm the versatility of GraphCLIP. Our code is available at: https://github.com/ZhuYun97/GraphCLIP
Abstract:Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
Abstract:Graph Transformers (GTs) have recently achieved significant success in the graph domain by effectively capturing both long-range dependencies and graph inductive biases. However, these methods face two primary challenges: (1) multi-view chaos, which results from coupling multi-view information (positional, structural, attribute), thereby impeding flexible usage and the interpretability of the propagation process. (2) local-global chaos, which arises from coupling local message passing with global attention, leading to issues of overfitting and over-globalizing. To address these challenges, we propose a high-level decoupled perspective of GTs, breaking them down into three components and two interaction levels: positional attention, structural attention, and attribute attention, alongside local and global interaction. Based on this decoupled perspective, we design a decoupled graph triple attention network named DeGTA, which separately computes multi-view attentions and adaptively integrates multi-view local and global information. This approach offers three key advantages: enhanced interpretability, flexible design, and adaptive integration of local and global information. Through extensive experiments, DeGTA achieves state-of-the-art performance across various datasets and tasks, including node classification and graph classification. Comprehensive ablation studies demonstrate that decoupling is essential for improving performance and enhancing interpretability. Our code is available at: https://github.com/wangxiaotang0906/DeGTA
Abstract:In the graph domain, deep graph networks based on Message Passing Neural Networks (MPNNs) or Graph Transformers often cause over-smoothing of node features, limiting their expressive capacity. Many upsampling techniques involving node and edge manipulation have been proposed to mitigate this issue. However, these methods often require extensive manual labor, resulting in suboptimal performance and lacking a universal integration strategy. In this study, we introduce UniGAP, a universal and adaptive graph upsampling technique for graph data. It provides a universal framework for graph upsampling, encompassing most current methods as variants. Moreover, UniGAP serves as a plug-in component that can be seamlessly and adaptively integrated with existing GNNs to enhance performance and mitigate the over-smoothing problem. Through extensive experiments, UniGAP demonstrates significant improvements over heuristic data augmentation methods across various datasets and metrics. We analyze how graph structure evolves with UniGAP, identifying key bottlenecks where over-smoothing occurs, and providing insights into how UniGAP addresses this issue. Lastly, we show the potential of combining UniGAP with large language models (LLMs) to further improve downstream performance. Our code is available at: https://github.com/wangxiaotang0906/UniGAP
Abstract:Large Language Models (LLMs) often suffer from overconfidence during inference, particularly when adapted to downstream domain-specific tasks with limited data. Previous work addresses this issue by employing approximate Bayesian estimation after the LLMs are trained, enabling them to quantify uncertainty. However, such post-training approaches' performance is severely limited by the parameters learned during training. In this paper, we go beyond post-training Bayesianization and propose Bayesian Low-Rank Adaptation by Backpropagation (BLoB), an algorithm that continuously and jointly adjusts both the mean and covariance of LLM parameters throughout the whole fine-tuning process. Our empirical results verify the effectiveness of BLoB in terms of generalization and uncertainty estimation, when evaluated on both in-distribution and out-of-distribution data.
Abstract:Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.
Abstract:The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
Abstract:Rich textual and topological information of textual graphs need to be modeled in real-world applications such as webpages, e-commerce, and academic articles. Practitioners have been long following the path of adopting a shallow text encoder and a subsequent graph neural network (GNN) to solve this problem. In light of recent advancements in large language models (LLMs), it is apparent that integrating LLMs for enhanced textual encoding can substantially improve the performance of textual graphs. Nevertheless, the efficiency of these methods poses a significant challenge. In this paper, we propose ENGINE, a parameter- and memory-efficient fine-tuning method for textual graphs with an LLM encoder. The key insight is to combine the LLMs and GNNs through a tunable side structure, which significantly reduces the training complexity without impairing the joint model's capacity. Extensive experiments on textual graphs demonstrate our method's effectiveness by achieving the best model performance, meanwhile having the lowest training cost compared to previous methods. Moreover, we introduce two variants with caching and dynamic early exit to further enhance training and inference speed. Specifically, caching accelerates ENGINE's training by 12x, and dynamic early exit achieves up to 5x faster inference with a negligible performance drop (at maximum 1.17% relevant drop across 7 datasets).
Abstract:Domain incremental learning aims to adapt to a sequence of domains with access to only a small subset of data (i.e., memory) from previous domains. Various methods have been proposed for this problem, but it is still unclear how they are related and when practitioners should choose one method over another. In response, we propose a unified framework, dubbed Unified Domain Incremental Learning (UDIL), for domain incremental learning with memory. Our UDIL **unifies** various existing methods, and our theoretical analysis shows that UDIL always achieves a tighter generalization error bound compared to these methods. The key insight is that different existing methods correspond to our bound with different **fixed** coefficients; based on insights from this unification, our UDIL allows **adaptive** coefficients during training, thereby always achieving the tightest bound. Empirical results show that our UDIL outperforms the state-of-the-art domain incremental learning methods on both synthetic and real-world datasets. Code will be available at https://github.com/Wang-ML-Lab/unified-continual-learning.