Abstract:Recently, research on Text-Attributed Graphs (TAGs) has gained significant attention due to the prevalence of free-text node features in real-world applications and the advancements in Large Language Models (LLMs) that bolster TAG methodologies. However, current TAG approaches face two primary challenges: (i) Heavy reliance on label information and (ii) Limited cross-domain zero/few-shot transferability. These issues constrain the scaling of both data and model size, owing to high labor costs and scaling laws, complicating the development of graph foundation models with strong transferability. In this work, we propose the GraphCLIP framework to address these challenges by learning graph foundation models with strong cross-domain zero/few-shot transferability through a self-supervised contrastive graph-summary pretraining method. Specifically, we generate and curate large-scale graph-summary pair data with the assistance of LLMs, and introduce a novel graph-summary pretraining method, combined with invariant learning, to enhance graph foundation models with strong cross-domain zero-shot transferability. For few-shot learning, we propose a novel graph prompt tuning technique aligned with our pretraining objective to mitigate catastrophic forgetting and minimize learning costs. Extensive experiments show the superiority of GraphCLIP in both zero-shot and few-shot settings, while evaluations across various downstream tasks confirm the versatility of GraphCLIP. Our code is available at: https://github.com/ZhuYun97/GraphCLIP
Abstract:Recent research has explored the use of Large Language Models (LLMs) for tackling complex graph reasoning tasks. However, due to the intricacies of graph structures and the inherent limitations of LLMs in handling long text, current approaches often fail to deliver satisfactory accuracy, even on small-scale graphs and simple tasks. To address these challenges, we introduce GraphAgent-Reasoner, a fine-tuning-free framework that utilizes a multi-agent collaboration strategy for explicit and precise graph reasoning. Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents. The agents collaborate to solve the overall problem, significantly reducing the amount of information and complexity handled by a single LLM, thus enhancing the accuracy of graph reasoning. By simply increasing the number of agents, GraphAgent-Reasoner can efficiently scale to accommodate larger graphs with over 1,000 nodes. Evaluated on the GraphInstruct dataset, our framework demonstrates near-perfect accuracy on polynomial-time graph reasoning tasks, significantly outperforming the best available models, both closed-source and fine-tuned open-source variants. Our framework also demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
Abstract:Knowledge graph embedding (KGE) constitutes a foundational task, directed towards learning representations for entities and relations within knowledge graphs (KGs), with the objective of crafting representations comprehensive enough to approximate the logical and symbolic interconnections among entities. In this paper, we define a metric Z-counts to measure the difficulty of training each triple ($<$head entity, relation, tail entity$>$) in KGs with theoretical analysis. Based on this metric, we propose \textbf{CL4KGE}, an efficient \textbf{C}urriculum \textbf{L}earning based training strategy for \textbf{KGE}. This method includes a difficulty measurer and a training scheduler that aids in the training of KGE models. Our approach possesses the flexibility to act as a plugin within a wide range of KGE models, with the added advantage of adaptability to the majority of KGs in existence. The proposed method has been evaluated on popular KGE models, and the results demonstrate that it enhances the state-of-the-art methods. The use of Z-counts as a metric has enabled the identification of challenging triples in KGs, which helps in devising effective training strategies.
Abstract:Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
Abstract:Graph Transformers (GTs) have recently achieved significant success in the graph domain by effectively capturing both long-range dependencies and graph inductive biases. However, these methods face two primary challenges: (1) multi-view chaos, which results from coupling multi-view information (positional, structural, attribute), thereby impeding flexible usage and the interpretability of the propagation process. (2) local-global chaos, which arises from coupling local message passing with global attention, leading to issues of overfitting and over-globalizing. To address these challenges, we propose a high-level decoupled perspective of GTs, breaking them down into three components and two interaction levels: positional attention, structural attention, and attribute attention, alongside local and global interaction. Based on this decoupled perspective, we design a decoupled graph triple attention network named DeGTA, which separately computes multi-view attentions and adaptively integrates multi-view local and global information. This approach offers three key advantages: enhanced interpretability, flexible design, and adaptive integration of local and global information. Through extensive experiments, DeGTA achieves state-of-the-art performance across various datasets and tasks, including node classification and graph classification. Comprehensive ablation studies demonstrate that decoupling is essential for improving performance and enhancing interpretability. Our code is available at: https://github.com/wangxiaotang0906/DeGTA
Abstract:In the graph domain, deep graph networks based on Message Passing Neural Networks (MPNNs) or Graph Transformers often cause over-smoothing of node features, limiting their expressive capacity. Many upsampling techniques involving node and edge manipulation have been proposed to mitigate this issue. However, these methods often require extensive manual labor, resulting in suboptimal performance and lacking a universal integration strategy. In this study, we introduce UniGAP, a universal and adaptive graph upsampling technique for graph data. It provides a universal framework for graph upsampling, encompassing most current methods as variants. Moreover, UniGAP serves as a plug-in component that can be seamlessly and adaptively integrated with existing GNNs to enhance performance and mitigate the over-smoothing problem. Through extensive experiments, UniGAP demonstrates significant improvements over heuristic data augmentation methods across various datasets and metrics. We analyze how graph structure evolves with UniGAP, identifying key bottlenecks where over-smoothing occurs, and providing insights into how UniGAP addresses this issue. Lastly, we show the potential of combining UniGAP with large language models (LLMs) to further improve downstream performance. Our code is available at: https://github.com/wangxiaotang0906/UniGAP
Abstract:Adaptive optimizers, such as Adam, have achieved remarkable success in deep learning. A key component of these optimizers is the so-called preconditioning matrix, providing enhanced gradient information and regulating the step size of each gradient direction. In this paper, we propose a novel approach to designing the preconditioning matrix by utilizing the gradient difference between two successive steps as the diagonal elements. These diagonal elements are closely related to the Hessian and can be perceived as an approximation of the inner product between the Hessian row vectors and difference of the adjacent parameter vectors. Additionally, we introduce an auto-switching function that enables the preconditioning matrix to switch dynamically between Stochastic Gradient Descent (SGD) and the adaptive optimizer. Based on these two techniques, we develop a new optimizer named AGD that enhances the generalization performance. We evaluate AGD on public datasets of Natural Language Processing (NLP), Computer Vision (CV), and Recommendation Systems (RecSys). Our experimental results demonstrate that AGD outperforms the state-of-the-art (SOTA) optimizers, achieving highly competitive or significantly better predictive performance. Furthermore, we analyze how AGD is able to switch automatically between SGD and the adaptive optimizer and its actual effects on various scenarios. The code is available at https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.
Abstract:Deep Neural Networks (DNNs) generalization is known to be closely related to the flatness of minima, leading to the development of Sharpness-Aware Minimization (SAM) for seeking flatter minima and better generalization. In this paper, we revisit the loss of SAM and propose a more general method, called WSAM, by incorporating sharpness as a regularization term. We prove its generalization bound through the combination of PAC and Bayes-PAC techniques, and evaluate its performance on various public datasets. The results demonstrate that WSAM achieves improved generalization, or is at least highly competitive, compared to the vanilla optimizer, SAM and its variants. The code is available at https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.
Abstract:We develop a novel framework that adds the regularizers of the sparse group lasso to a family of adaptive optimizers in deep learning, such as Momentum, Adagrad, Adam, AMSGrad, AdaHessian, and create a new class of optimizers, which are named Group Momentum, Group Adagrad, Group Adam, Group AMSGrad and Group AdaHessian, etc., accordingly. We establish theoretically proven convergence guarantees in the stochastic convex settings, based on primal-dual methods. We evaluate the regularized effect of our new optimizers on three large-scale real-world ad click datasets with state-of-the-art deep learning models. The experimental results reveal that compared with the original optimizers with the post-processing procedure which uses the magnitude pruning method, the performance of the models can be significantly improved on the same sparsity level. Furthermore, in comparison to the cases without magnitude pruning, our methods can achieve extremely high sparsity with significantly better or highly competitive performance.
Abstract:The large-scale recommender system mainly consists of two stages: matching and ranking. The matching stage (also known as the retrieval step) identifies a small fraction of relevant items from billion-scale item corpus in low latency and computational cost. Item-to-item collaborative filter (item-based CF) and embedding-based retrieval (EBR) have been long used in the industrial matching stage owing to its efficiency. However, item-based CF is hard to meet personalization, while EBR has difficulty in satisfying diversity. In this paper, we propose a novel matching architecture, Path-based Deep Network (named PDN), which can incorporate both personalization and diversity to enhance matching performance. Specifically, PDN is comprised of two modules: Trigger Net and Similarity Net. PDN utilizes Trigger Net to capture the user's interest in each of his/her interacted item, and Similarity Net to evaluate the similarity between each interacted item and the target item based on these items' profile and CF information. The final relevance between the user and the target item is calculated by explicitly considering user's diverse interests, \ie aggregating the relevance weights of the related two-hop paths (one hop of a path corresponds to user-item interaction and the other to item-item relevance). Furthermore, we describe the architecture design of a matching system with the proposed PDN in a leading real-world E-Commerce service (Mobile Taobao App). Based on offline evaluations and online A/B test, we show that PDN outperforms the existing solutions for the same task. The online results also demonstrate that PDN can retrieve more personalized and more diverse relevant items to significantly improve user engagement. Currently, PDN system has been successfully deployed at Mobile Taobao App and handling major online traffic.