Henry
Abstract:E-commerce risk management requires aggregating diverse, deeply embedded web data through multi-step, stateful interactions, which traditional scraping methods and most existing Graphical User Interface (GUI) agents cannot handle. These agents are typically limited to single-step tasks and lack the ability to manage dynamic, interactive content critical for effective risk assessment. To address this challenge, we introduce RISK, a novel framework designed to build and deploy GUI agents for this domain. RISK integrates three components: (1) RISK-Data, a dataset of 8,492 single-step and 2,386 multi-step interaction trajectories, collected through a high-fidelity browser framework and a meticulous data curation process; (2) RISK-Bench, a benchmark with 802 single-step and 320 multi-step trajectories across three difficulty levels for standardized evaluation; and (3) RISK-R1, a R1-style reinforcement fine-tuning framework considering four aspects: (i) Output Format: Updated format reward to enhance output syntactic correctness and task comprehension, (ii) Single-step Level: Stepwise accuracy reward to provide granular feedback during early training stages, (iii) Multi-step Level: Process reweight to emphasize critical later steps in interaction sequences, and (iv) Task Level: Level reweight to focus on tasks of varying difficulty. Experiments show that RISK-R1 outperforms existing baselines, achieving a 6.8% improvement in offline single-step and an 8.8% improvement in offline multi-step. Moreover, it attains a top task success rate of 70.5% in online evaluation. RISK provides a scalable, domain-specific solution for automating complex web interactions, advancing the state of the art in e-commerce risk management.
Abstract:Robotic real-world reinforcement learning (RL) with vision-language-action (VLA) models is bottlenecked by sparse, handcrafted rewards and inefficient exploration. We introduce VLAC, a general process reward model built upon InternVL and trained on large scale heterogeneous datasets. Given pairwise observations and a language goal, it outputs dense progress delta and done signal, eliminating task-specific reward engineering, and supports one-shot in-context transfer to unseen tasks and environments. VLAC is trained on vision-language datasets to strengthen perception, dialogic and reasoning capabilities, together with robot and human trajectories data that ground action generation and progress estimation, and additionally strengthened to reject irrelevant prompts as well as detect regression or stagnation by constructing large numbers of negative and semantically mismatched samples. With prompt control, a single VLAC model alternately generating reward and action tokens, unifying critic and policy. Deployed inside an asynchronous real-world RL loop, we layer a graded human-in-the-loop protocol (offline demonstration replay, return and explore, human guided explore) that accelerates exploration and stabilizes early learning. Across four distinct real-world manipulation tasks, VLAC lifts success rates from about 30\% to about 90\% within 200 real-world interaction episodes; incorporating human-in-the-loop interventions yields a further 50% improvement in sample efficiency and achieves up to 100% final success.
Abstract:Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, na\"ive context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
Abstract:Recent advancements in codebook-based real image super-resolution (SR) have shown promising results in real-world applications. The core idea involves matching high-quality image features from a codebook based on low-resolution (LR) image features. However, existing methods face two major challenges: inaccurate feature matching with the codebook and poor texture detail reconstruction. To address these issues, we propose a novel Uncertainty-Guided and Top-k Codebook Matching SR (UGTSR) framework, which incorporates three key components: (1) an uncertainty learning mechanism that guides the model to focus on texture-rich regions, (2) a Top-k feature matching strategy that enhances feature matching accuracy by fusing multiple candidate features, and (3) an Align-Attention module that enhances the alignment of information between LR and HR features. Experimental results demonstrate significant improvements in texture realism and reconstruction fidelity compared to existing methods. We will release the code upon formal publication.
Abstract:Omnidirectional image and video super-resolution is a crucial research topic in low-level vision, playing an essential role in virtual reality and augmented reality applications. Its goal is to reconstruct high-resolution images or video frames from low-resolution inputs, thereby enhancing detail preservation and enabling more accurate scene analysis and interpretation. In recent years, numerous innovative and effective approaches have been proposed, predominantly based on deep learning techniques, involving diverse network architectures, loss functions, projection strategies, and training datasets. This paper presents a systematic review of recent progress in omnidirectional image and video super-resolution, focusing on deep learning-based methods. Given that existing datasets predominantly rely on synthetic degradation and fall short in capturing real-world distortions, we introduce a new dataset, 360Insta, that comprises authentically degraded omnidirectional images and videos collected under diverse conditions, including varying lighting, motion, and exposure settings. This dataset addresses a critical gap in current omnidirectional benchmarks and enables more robust evaluation of the generalization capabilities of omnidirectional super-resolution methods. We conduct comprehensive qualitative and quantitative evaluations of existing methods on both public datasets and our proposed dataset. Furthermore, we provide a systematic overview of the current status of research and discuss promising directions for future exploration. All datasets, methods, and evaluation metrics introduced in this work are publicly available and will be regularly updated. Project page: https://github.com/nqian1/Survey-on-ODISR-and-ODVSR.
Abstract:Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions, but current evaluation focuses on syntactic correctness while ignoring deployability, the fatal measure of IaC template utility. We address this gap through two contributions: (1) IaCGen, an LLM-based deployability-centric framework that uses iterative feedback mechanism to generate IaC templates, and (2) DPIaC-Eval, a deployability-centric IaC template benchmark consists of 153 real-world scenarios that can evaluate syntax, deployment, user intent, and security. Our evaluation reveals that state-of-the-art LLMs initially performed poorly, with Claude-3.5 and Claude-3.7 achieving only 30.2% and 26.8% deployment success on the first attempt respectively. However, IaCGen transforms this performance dramatically: all evaluated models reach over 90% passItr@25, with Claude-3.5 and Claude-3.7 achieving 98% success rate. Despite these improvements, critical challenges remain in user intent alignment (25.2% accuracy) and security compliance (8.4% pass rate), highlighting areas requiring continued research. Our work provides the first comprehensive assessment of deployability-centric IaC template generation and establishes a foundation for future research.
Abstract:Robot manipulation, especially bimanual manipulation, often requires setting up multiple cameras on multiple robot manipulators. Before robot manipulators can generate motion or even build representations of their environments, the cameras rigidly mounted to the robot need to be calibrated. Camera calibration is a cumbersome process involving collecting a set of images, with each capturing a pre-determined marker. In this work, we introduce the Bi-Manual Joint Calibration and Representation Framework (Bi-JCR). Bi-JCR enables multiple robot manipulators, each with cameras mounted, to circumvent taking images of calibration markers. By leveraging 3D foundation models for dense, marker-free multi-view correspondence, Bi-JCR jointly estimates: (i) the extrinsic transformation from each camera to its end-effector, (ii) the inter-arm relative poses between manipulators, and (iii) a unified, scale-consistent 3D representation of the shared workspace, all from the same captured RGB image sets. The representation, jointly constructed from images captured by cameras on both manipulators, lives in a common coordinate frame and supports collision checking and semantic segmentation to facilitate downstream bimanual coordination tasks. We empirically evaluate the robustness of Bi-JCR on a variety of tabletop environments, and demonstrate its applicability on a variety of downstream tasks.
Abstract:Recent decoding methods improve the factuality of large language models~(LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
Abstract:Autonomous robots typically need to construct representations of their surroundings and adapt their motions to the geometry of their environment. Here, we tackle the problem of constructing a policy model for collision-free motion generation, consistent with the environment, from a single input RGB image. Extracting 3D structures from a single image often involves monocular depth estimation. Developments in depth estimation have given rise to large pre-trained models such as DepthAnything. However, using outputs of these models for downstream motion generation is challenging due to frustum-shaped errors that arise. Instead, we propose a framework known as Video-Generation Environment Representation (VGER), which leverages the advances of large-scale video generation models to generate a moving camera video conditioned on the input image. Frames of this video, which form a multiview dataset, are then input into a pre-trained 3D foundation model to produce a dense point cloud. We then introduce a multi-scale noise approach to train an implicit representation of the environment structure and build a motion generation model that complies with the geometry of the representation. We extensively evaluate VGER over a diverse set of indoor and outdoor environments. We demonstrate its ability to produce smooth motions that account for the captured geometry of a scene, all from a single RGB input image.
Abstract:Large Language Models (LLMs) have demonstrated unprecedented capability in code generation. However, LLM-generated code is still plagued with a wide range of functional errors, especially for complex programming tasks that LLMs have not seen before. Recent studies have shown that developers often struggle with inspecting and fixing incorrect code generated by LLMs, diminishing their productivity and trust in LLM-based code generation. Inspired by the mutual grounding theory in communication, we propose an interactive approach that leverages code comments as a medium for developers and LLMs to establish a shared understanding. Our approach facilitates iterative grounding by interleaving code generation, inline comment generation, and contextualized user feedback through editable comments to align generated code with developer intent. We evaluated our approach on two popular benchmarks and demonstrated that our approach significantly improved multiple state-of-the-art LLMs, e.g., 17.1% pass@1 improvement for code-davinci-002 on HumanEval. Furthermore, we conducted a user study with 12 participants in comparison to two baselines: (1) interacting with GitHub Copilot, and (2) interacting with a multi-step code generation paradigm called Multi-Turn Program Synthesis. Participants completed the given programming tasks 16.7% faster and with 10.5% improvement in task success rate when using our approach. Both results show that interactively refining code comments enables the collaborative establishment of mutual grounding, leading to more accurate code generation and higher developer confidence.