Henry
Abstract:Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
Abstract:Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Abstract:Achieving human-level competitive intelligence and physical agility in humanoid robots remains a major challenge, particularly in contact-rich and highly dynamic tasks such as boxing. While Multi-Agent Reinforcement Learning (MARL) offers a principled framework for strategic interaction, its direct application to humanoid control is hindered by high-dimensional contact dynamics and the absence of strong physical motion priors. We propose RoboStriker, a hierarchical three-stage framework that enables fully autonomous humanoid boxing by decoupling high-level strategic reasoning from low-level physical execution. The framework first learns a comprehensive repertoire of boxing skills by training a single-agent motion tracker on human motion capture data. These skills are subsequently distilled into a structured latent manifold, regularized by projecting the Gaussian-parameterized distribution onto a unit hypersphere. This topological constraint effectively confines exploration to the subspace of physically plausible motions. In the final stage, we introduce Latent-Space Neural Fictitious Self-Play (LS-NFSP), where competing agents learn competitive tactics by interacting within the latent action space rather than the raw motor space, significantly stabilizing multi-agent training. Experimental results demonstrate that RoboStriker achieves superior competitive performance in simulation and exhibits sim-to-real transfer. Our website is available at RoboStriker.
Abstract:Emotional states manifest as coordinated yet heterogeneous physiological responses across central and autonomic systems, posing a fundamental challenge for multimodal representation learning in affective computing. Learning such joint dynamics is further complicated by the scarcity and subjectivity of affective annotations, which motivates the use of self-supervised learning (SSL). However, most existing SSL approaches rely on pairwise alignment objectives, which are insufficient to characterize dependencies among more than two modalities and fail to capture higher-order interactions arising from coordinated brain and autonomic responses. To address this limitation, we propose Multimodal Functional Maximum Correlation (MFMC), a principled SSL framework that maximizes higher-order multimodal dependence through a Dual Total Correlation (DTC) objective. By deriving a tight sandwich bound and optimizing it using a functional maximum correlation analysis (FMCA) based trace surrogate, MFMC captures joint multimodal interactions directly, without relying on pairwise contrastive losses. Experiments on three public affective computing benchmarks demonstrate that MFMC consistently achieves state-of-the-art or competitive performance under both subject-dependent and subject-independent evaluation protocols, highlighting its robustness to inter-subject variability. In particular, MFMC improves subject-dependent accuracy on CEAP-360VR from 78.9% to 86.8%, and subject-independent accuracy from 27.5% to 33.1% using the EDA signal alone. Moreover, MFMC remains within 0.8 percentage points of the best-performing method on the most challenging EEG subject-independent split of MAHNOB-HCI. Our code is available at https://github.com/DY9910/MFMC.
Abstract:We present TransactionGPT (TGPT), a foundation model for consumer transaction data within one of world's largest payment networks. TGPT is designed to understand and generate transaction trajectories while simultaneously supporting a variety of downstream prediction and classification tasks. We introduce a novel 3D-Transformer architecture specifically tailored for capturing the complex dynamics in payment transaction data. This architecture incorporates design innovations that enhance modality fusion and computational efficiency, while seamlessly enabling joint optimization with downstream objectives. Trained on billion-scale real-world transactions, TGPT significantly improves downstream classification performance against a competitive production model and exhibits advantages over baselines in generating future transactions. We conduct extensive empirical evaluations utilizing a diverse collection of company transaction datasets spanning multiple downstream tasks, thereby enabling a thorough assessment of TGPT's effectiveness and efficiency in comparison to established methodologies. Furthermore, we examine the incorporation of LLM-derived embeddings within TGPT and benchmark its performance against fine-tuned LLMs, demonstrating that TGPT achieves superior predictive accuracy as well as faster training and inference. We anticipate that the architectural innovations and practical guidelines from this work will advance foundation models for transaction-like data and catalyze future research in this emerging field.
Abstract:Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
Abstract:E-commerce risk management requires aggregating diverse, deeply embedded web data through multi-step, stateful interactions, which traditional scraping methods and most existing Graphical User Interface (GUI) agents cannot handle. These agents are typically limited to single-step tasks and lack the ability to manage dynamic, interactive content critical for effective risk assessment. To address this challenge, we introduce RISK, a novel framework designed to build and deploy GUI agents for this domain. RISK integrates three components: (1) RISK-Data, a dataset of 8,492 single-step and 2,386 multi-step interaction trajectories, collected through a high-fidelity browser framework and a meticulous data curation process; (2) RISK-Bench, a benchmark with 802 single-step and 320 multi-step trajectories across three difficulty levels for standardized evaluation; and (3) RISK-R1, a R1-style reinforcement fine-tuning framework considering four aspects: (i) Output Format: Updated format reward to enhance output syntactic correctness and task comprehension, (ii) Single-step Level: Stepwise accuracy reward to provide granular feedback during early training stages, (iii) Multi-step Level: Process reweight to emphasize critical later steps in interaction sequences, and (iv) Task Level: Level reweight to focus on tasks of varying difficulty. Experiments show that RISK-R1 outperforms existing baselines, achieving a 6.8% improvement in offline single-step and an 8.8% improvement in offline multi-step. Moreover, it attains a top task success rate of 70.5% in online evaluation. RISK provides a scalable, domain-specific solution for automating complex web interactions, advancing the state of the art in e-commerce risk management.
Abstract:Robotic real-world reinforcement learning (RL) with vision-language-action (VLA) models is bottlenecked by sparse, handcrafted rewards and inefficient exploration. We introduce VLAC, a general process reward model built upon InternVL and trained on large scale heterogeneous datasets. Given pairwise observations and a language goal, it outputs dense progress delta and done signal, eliminating task-specific reward engineering, and supports one-shot in-context transfer to unseen tasks and environments. VLAC is trained on vision-language datasets to strengthen perception, dialogic and reasoning capabilities, together with robot and human trajectories data that ground action generation and progress estimation, and additionally strengthened to reject irrelevant prompts as well as detect regression or stagnation by constructing large numbers of negative and semantically mismatched samples. With prompt control, a single VLAC model alternately generating reward and action tokens, unifying critic and policy. Deployed inside an asynchronous real-world RL loop, we layer a graded human-in-the-loop protocol (offline demonstration replay, return and explore, human guided explore) that accelerates exploration and stabilizes early learning. Across four distinct real-world manipulation tasks, VLAC lifts success rates from about 30\% to about 90\% within 200 real-world interaction episodes; incorporating human-in-the-loop interventions yields a further 50% improvement in sample efficiency and achieves up to 100% final success.
Abstract:Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, na\"ive context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
Abstract:Recent advancements in codebook-based real image super-resolution (SR) have shown promising results in real-world applications. The core idea involves matching high-quality image features from a codebook based on low-resolution (LR) image features. However, existing methods face two major challenges: inaccurate feature matching with the codebook and poor texture detail reconstruction. To address these issues, we propose a novel Uncertainty-Guided and Top-k Codebook Matching SR (UGTSR) framework, which incorporates three key components: (1) an uncertainty learning mechanism that guides the model to focus on texture-rich regions, (2) a Top-k feature matching strategy that enhances feature matching accuracy by fusing multiple candidate features, and (3) an Align-Attention module that enhances the alignment of information between LR and HR features. Experimental results demonstrate significant improvements in texture realism and reconstruction fidelity compared to existing methods. We will release the code upon formal publication.