Abstract:Public scarce resource allocation plays a crucial role in economics as it directly influences the efficiency and equity in society. Traditional studies including theoretical model-based, empirical study-based and simulation-based methods encounter limitations due to the idealized assumption of complete information and individual rationality, as well as constraints posed by limited available data. In this work, we propose an innovative framework, SRAP-Agent (Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent), which integrates Large Language Models (LLMs) into economic simulations, aiming to bridge the gap between theoretical models and real-world dynamics. Using public housing allocation scenarios as a case study, we conduct extensive policy simulation experiments to verify the feasibility and effectiveness of the SRAP-Agent and employ the Policy Optimization Algorithm with certain optimization objectives. The source code can be found in https://github.com/jijiarui-cather/SRAPAgent_Framework
Abstract:Online Kernel Learning (OKL) has attracted considerable research interest due to its promising predictive performance in streaming environments. Second-order approaches are particularly appealing for OKL as they often offer substantial improvements in regret guarantees. However, existing second-order OKL approaches suffer from at least quadratic time complexity with respect to the pre-set budget, rendering them unsuitable for meeting the real-time demands of large-scale streaming recommender systems. The singular value decomposition required to obtain explicit feature mapping is also computationally expensive due to the complete decomposition process. Moreover, the absence of incremental updates to manage approximate kernel space causes these algorithms to perform poorly in adversarial environments and real-world streaming recommendation datasets. To address these issues, we propose FORKS, a fast incremental matrix sketching and decomposition approach tailored for second-order OKL. FORKS constructs an incremental maintenance paradigm for second-order kernelized gradient descent, which includes incremental matrix sketching for kernel approximation and incremental matrix decomposition for explicit feature mapping construction. Theoretical analysis demonstrates that FORKS achieves a logarithmic regret guarantee on par with other second-order approaches while maintaining a linear time complexity w.r.t. the budget, significantly enhancing efficiency over existing approaches. We validate the performance of FORKS through extensive experiments conducted on real-world streaming recommendation datasets, demonstrating its superior scalability and robustness against adversarial attacks.
Abstract:The utilization of sketching techniques has progressively emerged as a pivotal method for enhancing the efficiency of online learning. In linear bandit settings, current sketch-based approaches leverage matrix sketching to reduce the per-round time complexity from \(\Omega\left(d^2\right)\) to \(O(d)\), where \(d\) is the input dimension. Despite this improved efficiency, these approaches encounter critical pitfalls: if the spectral tail of the covariance matrix does not decrease rapidly, it can lead to linear regret. In this paper, we revisit the regret analysis and algorithm design concerning approximating the covariance matrix using matrix sketching in linear bandits. We illustrate how inappropriate sketch sizes can result in unbounded spectral loss, thereby causing linear regret. To prevent this issue, we propose Dyadic Block Sketching, an innovative streaming matrix sketching approach that adaptively manages sketch size to constrain global spectral loss. This approach effectively tracks the best rank-\( k \) approximation in an online manner, ensuring efficiency when the geometry of the covariance matrix is favorable. Then, we apply the proposed Dyadic Block Sketching to linear bandits and demonstrate that the resulting bandit algorithm can achieve sublinear regret without prior knowledge of the covariance matrix, even under the worst case. Our method is a general framework for efficient sketch-based linear bandits, applicable to all existing sketch-based approaches, and offers improved regret bounds accordingly. Additionally, we conduct comprehensive empirical studies using both synthetic and real-world data to validate the accuracy of our theoretical findings and to highlight the effectiveness of our algorithm.
Abstract:Graph generation is a fundamental task that has been extensively studied in social, technological, and scientific analysis. For modeling the dynamic graph evolution process, traditional rule-based methods struggle to capture community structures within graphs, while deep learning methods only focus on fitting training graphs. This limits existing graph generators to producing graphs that adhere to predefined rules or closely resemble training datasets, achieving poor performance in dynamic graph generation. Given that graphs are abstract representations arising from pairwise interactions in human activities, a realistic simulation of human-wise interaction could provide deeper insights into the graph evolution mechanism. With the increasing recognition of large language models (LLMs) in simulating human behavior, we introduce GraphAgent-Generator (GAG), a novel simulation-based framework for dynamic graph generation. Without training or fine-tuning process of LLM, our framework effectively replicates seven macro-level structural characteristics in established network science theories while surpassing existing baselines in graph expansion tasks by 31\% on specific evaluation metrics. Through node classification task, we validate GAG effectively preserves characteristics of real-world network for node-wise textual features in generated text-rich graph. Furthermore, by incorporating parallel acceleration, GAG supports generating graphs with up to nearly 100,000 nodes or 10 million edges through large-scale LLM-based agent simulation, with a minimum speed-up of 90.4\%. The source code is available at https://anonymous.4open.science/r/GraphAgent-2206.
Abstract:Recent research has explored the use of Large Language Models (LLMs) for tackling complex graph reasoning tasks. However, due to the intricacies of graph structures and the inherent limitations of LLMs in handling long text, current approaches often fail to deliver satisfactory accuracy, even on small-scale graphs and simple tasks. To address these challenges, we introduce GraphAgent-Reasoner, a fine-tuning-free framework that utilizes a multi-agent collaboration strategy for explicit and precise graph reasoning. Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents. The agents collaborate to solve the overall problem, significantly reducing the amount of information and complexity handled by a single LLM, thus enhancing the accuracy of graph reasoning. By simply increasing the number of agents, GraphAgent-Reasoner can efficiently scale to accommodate larger graphs with over 1,000 nodes. Evaluated on the GraphInstruct dataset, our framework demonstrates near-perfect accuracy on polynomial-time graph reasoning tasks, significantly outperforming the best available models, both closed-source and fine-tuned open-source variants. Our framework also demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
Abstract:Graph Neural Networks (GNNs) are extensively employed in graph machine learning, with considerable research focusing on their expressiveness. Current studies often assess GNN expressiveness by comparing them to the Weisfeiler-Lehman (WL) tests or classical graph algorithms. However, we identify three key issues in existing analyses: (1) some studies use preprocessing to enhance expressiveness but overlook its computational costs; (2) some claim the anonymous WL test's limited power while enhancing expressiveness using non-anonymous features, creating a mismatch; and (3) some characterize message-passing GNNs (MPGNNs) with the CONGEST model but make unrealistic assumptions about computational resources, allowing $\textsf{NP-Complete}$ problems to be solved in $O(m)$ depth. We contend that a well-defined computational model is urgently needed to serve as the foundation for discussions on GNN expressiveness. To address these issues, we introduce the Resource-Limited CONGEST (RL-CONGEST) model, incorporating optional preprocessing and postprocessing to form a framework for analyzing GNN expressiveness. Our framework sheds light on computational aspects, including the computational hardness of hash functions in the WL test and the role of virtual nodes in reducing network capacity. Additionally, we suggest that high-order GNNs correspond to first-order model-checking problems, offering new insights into their expressiveness.
Abstract:With the recent adoption of laws supporting the ``right to be forgotten'' and the widespread use of Graph Neural Networks for modeling graph-structured data, graph unlearning has emerged as a crucial research area. Current studies focus on the efficient update of model parameters. However, they often overlook the time-consuming re-computation of graph propagation required for each removal, significantly limiting their scalability on large graphs. In this paper, we present ScaleGUN, the first certifiable graph unlearning mechanism that scales to billion-edge graphs. ScaleGUN employs a lazy local propagation method to facilitate efficient updates of the embedding matrix during data removal. Such lazy local propagation can be proven to ensure certified unlearning under all three graph unlearning scenarios, including node feature, edge, and node unlearning. Extensive experiments on real-world datasets demonstrate the efficiency and efficacy of ScaleGUN. Remarkably, ScaleGUN accomplishes $(\epsilon,\delta)=(1,10^{-4})$ certified unlearning on the billion-edge graph ogbn-papers100M in 20 seconds for a $5K$-random-edge removal request -- of which only 5 seconds are required for updating the embedding matrix -- compared to 1.91 hours for retraining and 1.89 hours for re-propagation. Our code is available online.
Abstract:The drastic performance degradation of Graph Neural Networks (GNNs) as the depth of the graph propagation layers exceeds 8-10 is widely attributed to a phenomenon of Over-smoothing. Although recent research suggests that Over-smoothing may not be the dominant reason for such a performance degradation, they have not provided rigorous analysis from a theoretical view, which warrants further investigation. In this paper, we systematically analyze the real dominant problem in deep GNNs and identify the issues that these GNNs towards addressing Over-smoothing essentially work on via empirical experiments and theoretical gradient analysis. We theoretically prove that the difficult training problem of deep MLPs is actually the main challenge, and various existing methods that supposedly tackle Over-smoothing actually improve the trainability of MLPs, which is the main reason for their performance gains. Our further investigation into trainability issues reveals that properly constrained smaller upper bounds of gradient flow notably enhance the trainability of GNNs. Experimental results on diverse datasets demonstrate consistency between our theoretical findings and empirical evidence. Our analysis provides new insights in constructing deep graph models.
Abstract:Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining the original abilities, we design specific data mixture and curriculum strategies by utilizing existing datasets and synthesizing high-quality datasets. Specifically, we synthesize multidisciplinary scientific question and answer (QA) pairs based on related web pages, and subsequently incorporate these synthetic data to improve the scientific reasoning ability of Llama-3. We refer to the model after CPT as Llama-3-SynE (Synthetic data Enhanced Llama-3). We also present the tuning experiments with a relatively small model -- TinyLlama, and employ the derived findings to train the backbone model. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of the backbone models, including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval), without hurting the original capacities. Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.
Abstract:Recent advances in large language models (LLMs) have opened new avenues for applying multi-agent systems in very large-scale simulations. However, there remain several challenges when conducting multi-agent simulations with existing platforms, such as limited scalability and low efficiency, unsatisfied agent diversity, and effort-intensive management processes. To address these challenges, we develop several new features and components for AgentScope, a user-friendly multi-agent platform, enhancing its convenience and flexibility for supporting very large-scale multi-agent simulations. Specifically, we propose an actor-based distributed mechanism as the underlying technological infrastructure towards great scalability and high efficiency, and provide flexible environment support for simulating various real-world scenarios, which enables parallel execution of multiple agents, centralized workflow orchestration, and both inter-agent and agent-environment interactions among agents. Moreover, we integrate an easy-to-use configurable tool and an automatic background generation pipeline in AgentScope, simplifying the process of creating agents with diverse yet detailed background settings. Last but not least, we provide a web-based interface for conveniently monitoring and managing a large number of agents that might deploy across multiple devices. We conduct a comprehensive simulation to demonstrate the effectiveness of the proposed enhancements in AgentScope, and provide detailed observations and discussions to highlight the great potential of applying multi-agent systems in large-scale simulations. The source code is released on GitHub at https://github.com/modelscope/agentscope to inspire further research and development in large-scale multi-agent simulations.